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Abstract

Altun et al. studied the existence of fixed points for multivalued F -contractions

and established some fixed point theorems in complete metric spaces. Kumar et al.

expanded these results over the domain of partial metric spaces and demonstrated

fixed point theorems for multivalued F -contraction mappings. This research work

is an extension of the work of Kumar et al. We established some fixed point

results using a combination of alpha admissible mappings under multivalued F

contractions in the setting of partial b-metric spaces. Eventually, an application

of the main result is elaborated by proving the existence of the solution for an

integral equation.
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Chapter 1

Introduction

1.1 Historical Background

Functional analysis plays an influential role in the applied sciences as well as in

mathematics itself. Functional analysis is an abstract mathematical technique de-

rived from classical analysis. It offers some essential strategies for dealing with

difficulties in various mathematical analysis areas. In this study, we will work

explicitly on one of the functional analysis units, namely the metric fixed point

theory. H. Poincaré [1], a French mathematician, was the first person who ex-

amined the domain of fixed point theory in 1886 and explored different results

regarding fixed point theorems.

In a broader perspective, by fixed point theorem (fpth), we mean a formulation

that declares that under specific conditions a mapping f :M→ N acknowledges

one or more points m of M such that fm = m. For many years, numerous mea-

sures have been generalized to the fixed point theorem for different categories of

topological spaces and Banach spaces. The solution to various mathematical prob-

lems can be traced by adopting the suitable fpth on the underlying function space

with the application of relevant characteristics of a defined mapping. Many re-

searchers have concentrated on this theory due to its practicality in finding unique

solution to differential and integral equations and its applications in boundary

value problems, approximation theory, and non-linear analysis.

1
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The classical Brouwer fpth [2] confirmed the presence of the fixed point in closed

subsets of Euclidean space under continuous mapping and was presented with

proof in 1912. Later on, investigations by some authors demonstrated that this

result wasn’t valid in infinite-dimensional spaces. So researchers began looking at

other conditions for the defined mapping and desirable conditions on the ground

space. A comprehensive study in the development of fixed point theorems is given

in [3]. Stefan Banach [4] is greatly appreciated for setting the concepts of find-

ing the fixed points into an ideal framework, which gave a new direction to the

birth of modern fixed point theory. In 1922, he introduced the famous Banach

Contraction Principle (BCP), in which contraction mapping was used instead of

continuity. Later on, it was considered a powerful tool for finding unique fixed

points.

BCP says, in a complete metric space (M, d∗), a self map f :M→M satisfying

the contraction condition on M, i.e.,

d∗(fζ, fβ) ≤ cd∗(ζ, β),

for all ζ, β ∈M provided c ∈ [0, 1), has a unique fixed point.

Later on, BCP was generalized under different flavors of mappings; the first gener-

alization was given by Edelstein [5] in 1962 by modifying the contraction condition.

Another general result dealing with BCP was given by Diaz et al. [6] in 1965. Ad-

ditional work on BCP was investigated by Kasahara [7] in premetric spaces in

1968, in the same year, Kannan [8] highlighted some improvements regarding the

continuity of contraction condition of BCP.

Nadler [9], generalized BCP for set-valued mappings in 1969. Using appropriate

fpth for multivalued transformations is extensively more advantageous in opti-

mizations of different problems by reducing the error and allowing researchers to

work on the platform of approximation theory. The BCP was extended by Nuss-

baum [10], under k-set contractions also. One can see [11]- [17] for reading more

about generalized BCP in different domains.

On the other hand, researchers began playing with the defined properties of metric

spaces presented by M. Fréchet [18] in 1906. In the traditional definition, one may

notice the obvious fact that the distance of a point m from itself, i.e., d(m,m) = 0.
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But in 1992 Matthews [19] introduced the idea of non-zero self distance and pre-

sented partial metric space (PMS). The primary pillars of metric space, like open

sets, closed sets, convergence criteria and completeness, were also adjusted ac-

cordingly, but he demonstrated that BCP could be generalized in complete partial

metric space.

In 1999, a relaxed image of the partial metric was presented by Valero et al.[20]

in the setting of weak partial metric space. Another direction for some more gen-

eralized contractions in partial metric spaces was offered by Altun et al. [21] in

2010, and further revised by Mishra et al. [22] for tracking down unique fixed

points under contractive mapping in 2015. Another outstanding work was done

by Karapınar et al. [23]. They worked to find the common fixed point in partial

metric spaces. For more recent developments in this regard, one can read [24]-

[28].

A recommendation of b metric space (bMS) was outlined in 1989 by Bakhtin [29]

and modified by Czerwik [30] in 1993, opening new doors of research for others.

A new coefficient in triangular inequality of metric space was introduced, which

provided a base to bMS. BCP was beautifully generalized in this direction too.

Many researchers started exploring this domain.

An interesting and more generalized result for finding fixed points in this space

was given by Akkouchi [31]. The notion of set-valued mapping in the setting of

bMS was introduced by [32] - [34] under different contraction conditions.

A unique idea was given by Shukla [35] by blending both spaces mentioned above

together in 2014. He presented the domain of partial b metric spaces (PbMS). In

the next year [36] extended his work and used more relations in bMs and PbMS.

For working in this new domain, under the setting of multivalued mappings, Aydi

et al. [37] gave amazing work in 2019. Exploring PbMS in more wider sense one

can observe the work done by [38] - [40].

An article using multivalued F mapping in partial metric space was presented in

April 2021 by Kumar et al. [41]. A good generalization of BCP under this new

condition was presented. Encouraged by his work, we offered an idea of extending

BCP in the globe of PbMS by combining the notion of alpha admissible mapping

introduced by Samet [42] with the flavor of Multivalued F contractions.
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1.2 Thesis Contribution

Our thesis layout is briefly depicted below;

In Chapter 2, a short recap of some fundamental ideas used in metric spaces is

unveiled. This chapter has three main partitions. Firstly, some essential defini-

tions and examples are referenced, providing a basis for upcoming results. In the

2nd section, a few significant mappings are portrayed with the help of graphical

representation. In the 3rd section, a concise history of the development of fixed

point theorems is illustrated. Lastly, a quick review of extensions in some impor-

tant spaces is presented.

Chapter 3 features a historical background of partial metric space, along with

remarkable theorems. All required ingredients related to partial metric space are

outlined with the help of examples to distinguish it from metric space. The notion

of multivalued mappings is clarified with the help of illustrations and diagrams.

A detailed review of the work of Kumar [41] is articulated with an application on

a Fredholm integral equation.

Chapter 4 gives an overview of all key concepts used in PbMS. Also, the inter-

connected ideas concerning Hausdorff distance are presented under the structure

of this space. The idea of alpha-admissible mapping is also illustrated with the

support of examples and theorems. We proved the result of multivalued alpha F

mappings in the setting of PbMS and worked on locating fixed points in this new

direction. An application is also provided to support this idea, which will help in

predicting the solution of a Fredholm integral equation.

Chapter 5 recapitulates all expansions of our work and unlocks further recom-

mendations for others.



Chapter 2

Preliminaries

This chapter encloses some elementary definitions coupled with examples and some

important results, which are intended to be used in upcoming chapters. The first

section of this chapter is framed with some key definitions from metric spaces.

The next section is concerned with some preferred mappings, having a vital role

in proving subsequent results, and in the next section, a historical review of some

theorems is also articulated. Lastly, a quick review of some extensions in metric

space is presented.

2.1 Metric space

In 1906, M. Fréchet highlighted the notion of metric spaces, which was a gen-

eralization of natural distance. Later on, these spaces acted as a bridge between

topological spaces and real analysis and provided an establishment for metric fixed

point theory. This construction helped in solving various problems concerning

web search tools, graphics arrangements, the convergence of series, approximation

problems, etc.

Definition 2.1.1. Metric Space.

“A metric space is a pair (M, ď), where M is a set and ď is a metric on M

(or distance function on M), that is, a function on M ×M such that for all

p, q, r ∈M, we have:

5
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(M1): ď is real-valued, finite and nonnegative.

(M2): ď(p, q) = 0 if and only if p = q.

(M3): ď(p, q) = ď(q, p) (Symmetry).

(M4): ď(p, r) ≤ ď(p, q) + ď(q, r) (Triangle inequality).

The symbol × denotes the cartesian product of sets.

Hence M×M is the set of all ordered pairs of elements of M.”[18].

Some examples supporting this idea are given below.

Example 2.1.2.

(i) Let M = R, the set consisting of all real numbers, a metric function ď :

M×M→ R+ can be defined as

ď(%, ξ) = |%− ξ|,

for all %, ξ ∈M.

It is easy to verify that this defined metric function satisfies all axioms of

metric space and it is known as the usual metric on M.

(ii) Let M = R2, a defined metric function ď :M×M→ R+,

ď(l,m) =
√

(ξ1 − ξ2)2 + (ζ1 − ζ2)2,

where l = (ξ1, ζ1) and m = (ξ2, ζ2), with ξ1, ξ2, ζ1, ζ2 ∈ R, is a metric on

M = R2.

(iii) M is the collection of all real-valued continuous functions (ζ, %, .....), depend-

ing on the real variable θ, on a given closed interval I = [α, β] . We define a

metric function as,

ď(ζ, %) = max
θ∈I
|ζ(θ)− %(θ)|,

where max denotes the maximum value of functions at θ in a given interval.

Then (M, ď) is a metric space and we would call C[α, β] the function space.

One can easily verify that for this particular defined metric function (M1),(M2)

and (M3) are satisfied,
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(M4). For ζ, %, υ ∈M. Consider,

ď(ζ, υ) = max
θ∈I
|ζ(θ)− υ(θ)|

= max
θ∈I
|ζ(θ)− %(θ) + %(θ)− υ(θ)|

≤ max
θ∈I

(|ζ(θ)− %(θ)|+ |%(θ)− υ(θ)|)

= max
t∈I
|ζ(θ)− %(θ)|+ max

θ∈I
|%(θ)− υ(θ)|

= ď(ζ, %) + ď(%, υ),

for all ζ, %, υ ∈M.

Definition 2.1.3. Open and Closed Ball.

“Given a point m0 ∈ M and a real number a > 0, an open ball in metric space

(M, ď) is defined, as follow

B(m0, a) = {m ∈M | ď(m0,m) < a},

and a closed ball is defined as

B(m0, a) = {m ∈M | ď(m0,m) ≤ a}.” [18]

Definition 2.1.4. Open Set and Closed Set.

“A subset U of a metric space (M, ď) is said to be an open set if it contains a ball

about each of its points. A subset V of metric space (M, ď) is said to be closed if

its complement in M is open, that is

V c =M− V

is open.” [18]

Definition 2.1.5. Diameter of a Set.

“The diameter of a non empty set B in a metric space (M, ď) is defined to be

δ(B) = sup
a,b∈B

ď(a, b),

B is said to be bounded set if δ(B) <∞.” [18]
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Definition 2.1.6. Convergent Sequence.

“A sequence (ak) in a metric space M = (M, ď) is said to converge or to be

convergent if there is an a0 ∈ M, such that limk→∞ ď(ak, a0) = 0, a0 is called the

limit of (ak) and we write limk→∞ ak = a0 or simply ak → a0.” [18]

Definition 2.1.7. Cauchy Sequence.

“A sequence (an) in a metric space (M, ď) is said to be Cauchy Sequence (or

fundamental) if for every ε > 0 there is an N = N(ε), such that ď(am, an) < ε for

every m,n ≥ N.” [18]

Example 2.1.8.

Consider a sequence {a%} in R with usual metric, defined as

{a%} =
%2

%2 + 1
.

To verify that it is a Cauchy sequence in R,

Consider,

|a% − aζ | =

∣∣∣∣∣ %2

%2 + 1
− ζ2

ζ2 + 1

∣∣∣∣∣
=

∣∣∣∣∣%2ζ2 + %2 − %2ζ2 − ζ2

(%2 + 1)(ζ2 + 1)

∣∣∣∣∣
=

∣∣∣∣∣ %2 − ζ2

(%2 + 1)(ζ2 + 1)

∣∣∣∣∣
=

∣∣∣∣∣ %2

(%2 + 1)(ζ2 + 1)
+

−ζ2

(%2 + 1)(ζ2 + 1)

∣∣∣∣∣
≤

∣∣∣∣∣ %2

(%2 + 1)(ζ2 + 1)

∣∣∣∣∣+

∣∣∣∣∣ ζ2

(%2 + 1)(ζ2 + 1)

∣∣∣∣∣
≤

∣∣∣∣∣ %2

(%2)(ζ2 + 1)

∣∣∣∣∣+

∣∣∣∣∣ ζ2

(%2 + 1)(ζ2)

∣∣∣∣∣
=

1

ζ2 + 1
+

1

%2 + 1

<
1

ζ2
+

1

%2

<
ε

2
+
ε

2

= ε.
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Set %, ζ >
√

2
ε

and by Archimedean’s property letting N >
√

2
ε
.

It can be observed that every convergent sequence ultimately becomes a Cauchy

sequence, but the converse of this result doesn’t hold generally.

Definition 2.1.9. Complete Space.

“The space M is said to be complete if every Cauchy sequence in M converges.”[18]

The space C of complex numbers, the space Rn, the space of all real sequences

(ξk) with metric defined as

d̆(ξk, %k) =
∞∑
k=1

|ξk − %k|
k!(1 + |ξk − %k|)

,

are some examples of complete spaces.

Not every space is complete; for this, observe the following example.

Example 2.1.10.

Consider (M, ď), being space of all polynomials depending on variable x on some

closed on interval I = [0, 1], with metric function defined as

ď(P ,S) = max
x∈I
|P(x)− S(x)|.

We can easily find a Cauchy sequence Pk(x) = xk

k!
,

for large values of k, i.e.,
∞∑
k=0

xk

k!

it converges to ex, which is not a polynomial, so M is not complete space.

The completeness property of a space not only depends on the space structure but

also changes according to the defined metric function. This can be explained with

the help of the following example;

Example 2.1.11.

The function space C [a, b] with metric function, defined as

ď(xn, xp) = max
t∈J
|xn(t)− xp(t)|,
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on a finite closed interval J = [0, 1], is a complete space.

But observe that if on the same space in the same closed interval if we define

another metric function as

ď(xn, xp) =

∫ 1

0

|xn(t)− xp(t)|dt,

is not a complete metric space.

To verify this, we construct a Cauchy sequence

xp(t) =


0 if 0 ≤ t ≤ 1

2

p
(
t− 1

2

)
if 1

2
≤ t ≤ ap

1 if ap ≤ t ≤ 1.

Where ap = 1
2

+ 1
p
.

Next to show that it doesn’t converge in C [a, b].

Figure 2.1: Cauchy Sequence

Consider

ď(xp, x) =

∫ 1

0

| xp(t)− x(t) | dt

=

∫ 1
2

0

| xp(t)− x(t) | dt+

∫ ap

1
2

| xp(t)− x(t) | dt

+

∫ 1

ap

| xp(t)− x(t) | dt.
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Now as

ď(xp, x)→ 0

so each integral should approach to 0.

This means (xp) is not convergent because

xp(t) = 0

when t lies in
[
0, 1

2

]
and

xp(t) = 1

when t is in between
[
1
2
, 1
]
.

One of the most important ideas in the study of metric space is the distance

between sets, which gives us information about the relation in points of a metric

space. The following definitions will be helpful in our next discussion.

Definition 2.1.12. Distance of a point and a set.

“The distance ď(c, A) from a point c to a non-empty subset A of (M, ď) is defined

to be

ď(c, A) = inf
a∈A

ď(c, a).” [18]

Definition 2.1.13. Distance between sets.

“The distance D(P ,Q) between two nonempty subsets P and Q of a metric space

(M, ď) is defined to be

D(P ,Q) = inf{ď(p, q) : p ∈ P , q ∈ Q}.” [18]

Definition 2.1.14. Hausdorff distance.

“Let (M, ď) be a metric space and CB(M) denotes the collection of all nonempty

closed and bounded subsets of M. For P ,Q ∈ CB(M) define

H(P ,Q) = max{sup
p∈P

ď(p,Q), sup
q∈Q

ď(q,P)}.

Where ď(p,Q) is distance of p to the set Q. It is known that H is a metric on

CB(M), called the Hausdorff metric induced by the metric ď.” [43]
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Example 2.1.15.

Consider P = {0, 1, 2, ..., 10} with usual distance. Select two non-empty closed

subsets of P , D = {1, 5} and M = {6, 9}. Now,

H(D,M) = max{sup
l∈D

ď(l,M), sup
m∈M

ď(D,m)}

= max{sup
l∈D

ď(l, {6, 9}), sup
m∈M

ď({1, 5},m)}

= max{sup{5, 1}, sup{1, 4}}

= max{5, 4}

= 5.

2.2 Some Useful Mappings in Metric Space

Some mappings have a major role in developing important results in upcoming

chapters; these will highlight the connection between elements of sets and their

outputs under defined correspondence.

Definition 2.2.1. Continuous Mapping.

“Let M = (M, d) and N = (N , d̃) be metric spaces. A mapping T :M→ N is

said to be continuous at a point x0 ∈ M if for every ε > 0 there is a δ > 0, such

that ď(T (x), T (x0)) < ε, for all x satisfying d(x, x0) < δ.” [18]

Figure 2.2: Continuous Mapping
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Theorem 2.2.2.

“A mapping T :M→N of a metric space (M, d1) into a metric space (N , d2) is

continuous at a point x0 ∈M if and iff xn −→ x0 =⇒ Txn −→ Tx0.” [18]

Definition 2.2.3. Lipschitzian Mapping.

“Let (M, ď) be a metric space. A mapping f :M→M is said to be Lipschitzian

if there exists a constant c ≥ 0 with,

ď(f(m), f(n)) ≤ cď(m,n) for all m,n ∈M.

The smallest c for which this condition holds is said to be the Lipschitz constant

for f .” [44]

Example 2.2.4.

Consider (R, ď) with usual metric, we define a self map in f : R→ R as

f(ξ) = 3ξ + 5,

=⇒ ď(f(ξ), f(η)) = |3ξ + 5− 3η − 5|

= |3ξ − 3η|

= |3||ξ − η|

= 3ď(ξ, η),

showing that f is Lipschitzian map with Lipschitz constant 3.

Definition 2.2.5. Contraction Mapping.

“Let (M, ď) be a metric space. A mapping f :M→M is called contraction on

M if there is a positive real number c < 1 such that for all m,n ∈M with

ď(f(m), f(n)) ≤ cď(m,n) (2.1)

Geometrically this means that any points m and n have images that are closer

together than those points m and n.” [18]

Example 2.2.6.

Let M = [0, 1] be endowed with usual metric.
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A map T :M→M defined as

T (m) =
1

2 +m
,

is a contraction mapping with c = 0.25 ∈ [0, 1).

Under the same metric structure, another mapping T : R→ R working as

T (m) =
1

10
+m,

is a contraction with c = 0.1 ∈ [0, 1).

Theorem 2.2.7.

Every contraction mapping is continuous.

Proof. Consider M be a metric space (M, ď) and let f : M → M be contrac-

tion mapping. Let k,m ∈ M and δ > 0 be any fixed positive number such

that,ď(m, k) < δ. By definition of the contraction mapping

ď(f(m), f(k)) ≤ cď(m, k) = cδ < ε,

by choosing δ = ε/c, showing that f is continuous.

Proposition 2.2.8.

Let f :M→M be a continuously differentiable map satisfying | f́ |< 1 under the

usual metric on M, then f is a contraction mapping.

Proof. By mean value theorem, there exists a z∗ ∈ (0, 1) such that

f(ξ)− f(%) = f́(z∗)(ξ − %)

|f(ξ)− f(%)| = |́f(z∗)||ξ − %| ≤ γ|ξ − %|,

where

γ = sup | f́(z) |< 1

for all z in M.
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Example 2.2.9.

Let M = (R, d), and define f :M→M as,

f(φ) = φ− ln(1 + eφ),

df

dφ
=

1

1 + eφ
∈ (0, 1) for all φ ∈ R.

Hence we can write,

| f(φ1)− f(φ2) |=
∣∣∣∣ dfdφ

∣∣∣∣|φ1 − φ2 |<| φ1 − φ2 | .

Observe that in this case, the Lipschitz constant is exactly equal to 1.

So above mapping is not a contraction mapping. Now we may define another

mapping in this regard as follow.

Definition 2.2.10. Contractive Mapping.

“A mapping F :M→M is said to be contractive if for m 6= n, we have,

ď(F(m),F(n)) < ď(m,n)

for all m,n ∈M.” [45]

Example 2.2.11.

Consider, M = [1,∞) with usual metric.

We define f :M→M as f(%) = %+ 1
%
, then we have

ď(f(%), f(s̃)) = ď(%+
1

%
, s̃+

1

s̃
)

=| (%+
1

%
)− (s̃+

1

s̃
) |

=| %− s̃+
1

%
− 1

s̃
|

=| (%− s̃)(1− 1

%s̃
) |

=| %− s̃ || 1− 1

%s̃
|

<| %− s̃ |

= ď(%, s̃).
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It can also be observed that it is a contractive mapping but not a contraction. As

ďf

d%
= 1− 1

%2
,

As,
df

d%
∈ [0, 1).

But here Lipschitz constant is approaching 1 for high values of %. It can be shown

graphically as

Figure 2.3: Contractive Mapping

2.3 Fixed Points of a Mapping

In 1880, Henri Poincare revealed that the study of some significant analytical

problems could be done by defining a set M and a function T :M→M so that

the solution coincides to the fixed point of the function T .

With this achievement, fixed points become more important for getting the so-

lution to problems occurring in various dimensions of mathematical analysis.
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Definition 2.3.1. Fixed Point.

“A fixed point of a mapping f :M→M on a set M into itself is m ∈M which

is mapped onto itself, that is f(m) = m, the image f(m) coincides with m.” [18]

If we have a real-valued function, then the fixed points are the points of intersection

y = m

and

y = f(m).

Let’s have a look at the graphical representation of fixed points.

Example 2.3.2.

Consider a real-valued map f : R→ R, defined as

f(m) = m2 − 5m+ 5,

has two fixed points.

Figure 2.4: 2-fixed points
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If we define f : R→ R, as f(m) = m− ln(1+em), then there isn’t any fixed point.

Figure 2.5: No fixed point

And now for f : R→ R, defined as f(m) = 5m(1−m) ,then fixed point for f and

f(f(m)) = f 2(m), are shown below

Figure 2.6: Fixed Points of f
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Figure 2.7: Fixed Points of f2

Definition 2.3.3. Fixed Point Theorem.

A statement that assures fixed points of a mapping under some certain suitable

restrictions in any specified space is called the fixed point theorem.

Some of such important theorems are presented here.

In 1912 famous Brouwer theorem was given. Although this theorem didn’t give

any information about the location of fixed points, it gave a direction toward the

existence of fixed points. He just assumed the continuity condition of mapping on

a finite-dimensional space and presented the following theorem.

Theorem 2.3.4.

“Every continuous mapping from a closed ball of Euclidean space into itself has a

fixed point.” [2]

In 1930, an improved version of the above result was presented by Schauder, with

the addition of compactness condition on subsets of the Euclidean space.
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Theorem 2.3.5.

“Every continuous function from a convex compact subset of Euclidean space to

itself has a fixed point.” [46]

In 1922, Stefan Banach presented a theorem known as Banach Contraction Prin-

ciple (BCP).

He used the contraction condition of a self-map and worked for complete spaces.

His approach ensured that fixed points exist and are unique.

Theorem 2.3.6.

“Let (M, d) be a complete metric space and F : M → M be a contraction

mapping, then F admits a unique fixed point in M.” [4]

Example 2.3.7.

Consider a complete metric space M = [−1, 1] equipped with the usual distance.

We define a self-contraction mapping as

f(m) =
1

2
cos2(m).

One can check that constant contraction lies between 0 and 0.5. This specified

map has a unique fixed point, which can be observed in the following diagram;

Figure 2.8: A unique fixed point
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The contraction condition used by Banach was modified for the first time by

Edelstein in 1962. He presented the following result:

Theorem 2.3.8.

“Let (M, ď) be a metric space and F be a self-contractive mapping on M i.e.,

ď(F(m),F(n)) < ď(m,n) for all m,n ∈M,

and there exists a point m such that the sequence of its iterates contains a subse-

quence which converges to a point m∗ in M, then m∗ is a unique fixed point of

F”.[5]

In 1962, Rakotch [47] proposed a more advanced idea regarding contraction con-

stant. He proved the validity of BCP after replacing the constant c ∈ [0, 1) with

a metric depending monotonically decreasing function c(m,n) ∈ [0, 1).

He gave the following generalized result.

Theorem 2.3.9.

“Let (M, ď) be a complete metric space and F be a self contractive mapping on M

such that

ď(F(m),F(n)) < c(m,n)ď(m,n) for all m,n ∈M,

and there exists a K ⊂M such that for m0 ∈ K we have

ď(m,m0)− ď(F(m),F(m0)) ≥ 2ď(m0,F(m0)) for all m ∈ Kc,

then there exists a unique fixed point of F .”

2.4 Some Extensions in Metric spaces

Many researchers tried to modify the conditions of metric spaces and highlighted

new possible dimensions. Major metric fixed point theory results were surprisingly

valid in these new directions too. Two fine extensions are presented here:
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2.4.1 b-Metric Spaces

The idea of bMS was suggested by Bakhtin [29] and Czerwik [30], with modifica-

tion in the triangular property of the metric space. Numerous researchers started

working on this ground and produced remarkable work.

In the current section, we will look at some main ideas and results that will

be applicable to our upcoming sections, including the basic definition of b-metric

space by attaching a few examples, the convergence criterion, and the completeness

property of these spaces.

Definition 2.4.1. b-metric space.

“Let M be non empty set and b ≥ 1 be a given real number. A function db :

M×M→ R+ is said to be b-metric on M, the pair (M, db) is called a b-metric

space if for all η, ξ, µ ∈M,

B1: db(η, ξ) = 0 if and only if η = ξ.

B2: db(η, ξ) = db(ξ, η).

B3: db(η, µ) ≤ b{db(η, ξ) + db(ξ, µ)}.” [48]

One can observe that by setting b = 1, we will jump back into the domain of

metric space.

So the concept of b-metric is comparatively a stronger idea than the metric space.

Let’s have a look at some examples.

We will use the following two well-known inequalities while proving B3

(m+ n)k ≤ 2k−1(mk + nk) k > 1. (2.2)

( ∞∑
k=1

|mk + nk|p
)1/p ≤ ( ∞∑

k=1

|mk|p
)1/p

+
( ∞∑
k=1

|nk|p
)1/p

(2.3)

Example 2.4.2.

Let M = lp(R), p ∈ (0, 1), the space of all real sequences having the property

lp(R) = {m = mk ⊂ R}
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such that
∑∞

k=1 |mk|p <∞.

We define a function db :M×M→ R+ , as

db(m,n) =
( ∞∑
k=1

|mk − nk|p
)1/p

.

B1: Consider db(m,n) = 0

=⇒
( ∞∑
k=1

|mk − nk|p
)1/p

= 0

⇐⇒
∞∑
k=1

|mk − nk|p = 0 : |mk − nk|p ∈ R+

⇐⇒ lim
n→∞

|mi − ni| = 0 for some i ∈ N

⇐⇒ |mi − ni| = 0

⇐⇒ mi − ni = 0

⇐⇒ mi = ni

⇐⇒ m = n.

B2: Symmetry follows from the symmetric relation of absolute value.

B3: Consider

db(m, k) =
( ∞∑
i=1

|mi − ki|p
)1/p

=
( ∞∑
i=1

|mi − ki + ni − ni|p
)1/p

≤
( ∞∑
i=1

2p−1(|mi − ni|p + |ni − ki|p)
)1/p

using (2.2)

≤
∞∑
i=1

2p−1
(
(|mi − ni|p)1/p +

∞∑
i=1

(|ni − ki|p)1/p
)

using (2.3)

= b

( ∞∑
i=1

|mi − ni|p
)1/p

+
( ∞∑
i=1

|ni − ki|p
)1/p

= b{db(m,n) + db(n, k)},

showing that (M, db) is a b-metric space.
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Example 2.4.3.

Let M = R and db :M×M→ R+ be a function defined as

db(η, υ) = (η − υ)2 for all η, υ ∈M,

for all η, υ ∈ M. it can be checked easily that (M, db) is a b-metric space

with b = 2.

Example 2.4.4.

Consider the space of all real functionsM = lp(R), depending on variable θ, with

condition ∫ 1

0

|h(θ)|pdx <∞,

then (M, db) is a b-metric space with b = 2
1
p .

Where the metric function db :M×M→ [0,∞) is defined, as follow

db(h, k) =

(∫ 1

0

|h(θ)− k(θ)|pdx
)1/p

.

for all h, k ∈M with p ∈ [0, 1]

Definition 2.4.5. Convergence and Completeness in b-metric space.

“Let (M, db) be a b-metric space;

(i) A sequence {mk} in M is called convergent sequence if and only if there

exists a m0 ∈M such that for all k ≥ k(ε) ∈ N, we have

db(mk,m0) < ε for ε > 0.

(ii) A sequence {mk} in M is said to be a Cauchy sequence if and only if there

exists ε > 0 such that for all k, l ≥ k(ε) ∈ N,

db(mk,ml) < ε.

(iii) If every Cauchy sequence is convergent inM, thenM is said to be a complete

bMS”.
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In 1993, BCP was generalized by Czerwik [30] in b-metric space by assuming the

completeness property of space.

Theorem 2.4.6.

“Let (M, db) be a complete b metric space , and let T :M×M→ R+ satisfies,

db(T(υ),T(n)) ≤ ψdb(υ, n) for all υ, n ∈M,

where if ψ : R+ → R+ is an increasing function, such that

lim
k→∞

ψk(υ) = 0.

Then T has exactly one fixed point v∗ and

lim
k→∞

db(Tk(υ), v∗) = 0.” [30]

2.4.2 Partial Metric Space

S. Matthews [19] proposed the profound theory of partial metric space in 1992,

suggesting the presence of nonzero self-distances in the metric space.

After his work, many authors started exploring more results on the framework of

the partial metric space by observing the presence of unique fixed points under

different flavors of contraction conditions.

Definition 2.4.7. Partial Metric Space (PMS).

“Let be M be a non-empty set. A partial metric space is a pair (M, dp) where

dp is a function dp : M×M → R+, called the partial metric, such that for all

s, p∗, k ∈M. the following axioms hold:

P1: dp(s, s) ≤ dp(s, p
∗).

P2: If dp(s, s) = dp(s, p
∗) = dp(p

∗, p∗) ⇐⇒ s = p∗.

P3: dp(s, p
∗) = dp(p

∗, s).

P4: dp(s, p
∗) ≤ dp(s, k) + dp(k, p

∗)− dp(k, k).” [19].

Every PMS subsequently becomes metric space with an additional innovation of

nonzero self-distance, But converse of this fact doesn’t hold generally .
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One may notice that the metric space lies in the globe of partial metric space,

which is a more generalized concept.

Example 2.4.8.

(i) Let M = R and max denotes the maximum function then we define a map

as dp :M×M→ R+, such that

dp(µ, ζ
∗) = max(µ, ζ∗),

defines a partial metric on M, which can be shown as follow

P1: Set µ > ζ∗ then,

dp(µ, ζ
∗) = max{µ, ζ∗}

= µ

> ζ∗

= max{ζ∗, ζ∗}

= dp(ζ
∗, ζ∗)

=⇒ dp(µ, ζ
∗) > dp(ζ

∗, ζ∗)

Now let µ < ζ∗,

then we have,

dp(µ, ζ
∗) = max{µ, ζ∗} = ζ∗ = max{ζ∗, ζ∗} = dp(ζ

∗, ζ∗),

by combining both relations, we conclude

dp(µ, ζ
∗) ≥ dp(ζ

∗, ζ∗) for all µ, ζ∗. P2: Consider µ = ζ∗,

=⇒ dp(µ, ζ
∗) = dp(µ, µ)

= max{µ, µ}

= µ

= ζ∗

= max{ζ∗, ζ∗}

= dp(ζ
∗, ζ∗).
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Conversely setting,

dp(µ, µ) = dp(ζ
∗, ζ∗) = dp(µ, ζ

∗)

. We can easily get

dp(µ, µ) = dp(ζ
∗, ζ∗) = dp(µ, ζ

∗) ⇐⇒ µ = ζ∗,

for all µ, ζ∗ ∈M.

P3: Clearly, symmetry follows because of the symmetric property of the

maximum function.

P4: Let µ, ζ∗, θ be any elements of M and we have a relation

µ ≤ ζ∗ ≤ θ

. Now consider

dp(µ, ζ
∗) = max{µ, ζ∗}

≤ ζ∗

= θ + ζ∗ − θ

= max{µ, θ}+ max{ζ∗, θ} −max{θ, θ}

= dp(µ, θ) + dp(ζ
∗, θ)− dp(θ, θ).

=⇒ dp(µ, ζ
∗) ≤ dp(µ, θ) + dp(ζ

∗, θ)− dp(θ, θ),

for all µ, ζ∗, θ ∈M.

(ii) Let U be the set of closed and bounded intervals in R, i.e.,

U = {[ζ, η] : ζ ≤ η}

with defined metric function dp : U × U → R+ as,

dp([ζ, η], [ξ, θ]) = max(η, θ)−min(ζ, ξ),

for [ζ, η], [ξ, θ] ∈ U , is a partial metric over U . In this specific example, the
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self distance is simply the length of the desired closed interval, the difference

of the endpoints of the interval, i.e.,

dp([ν, ν], [ξ, ξ]) = ξ − ν.

(iii) Let M 6= φ and we have a partial metric dp :M×M→ R+, defined as

dp(ζ, ξ) = emax(ζ,ξ),

then (M, dp) is a PMS for all ζ, ξ ∈M.



Chapter 3

Some Fixed Point Results under

MVF-Contractions in PMS.

In this chapter, a detailed review of the work of Kumar et al. [41] is presented, in

which the fixed point theorems for multivalued F -contraction (MVFC) are given.

Furthermore, we added useful definitions and important theorems concerning fixed

points under MVFCs in the frame of partial metric space.

3.1 Some Tools from Partial Metric Spaces.

In the first section, we will recall some basic ideas from the domain of partial

metric space, which includes the convergence criterion and completeness properties

of these spaces.

Continuity of a function in these spaces is also portrayed. Some related results are

also presented to have a deeper understandings of partial metric space.

Definition 3.1.1. Open p-ball.

Consider (M, dp) be a PMS then an open p-ball of radius ε > 0 ∈ R, with center

η ∈M is defined as

Bp(η, ε) = {m ∈M : dp(η,m) < dp(η, η) + ε} for all m ∈M. [41]

29



F ixed Point Results for Multivalued F -Contractions in PMS 30

Remark 3.1.2.

A T0 topology τp on M = (M, dp) can be generated always, where the collection

of open p-balls

{Bp(ξ, r
∗) : ξ ∈M, r∗ > 0},

provides a base for this topology.

Definition 3.1.3. Closed Set.

Let (M, dp) is a PMS then a subset S of M is said to be a closed in M if and

only if S̄ = S, here S̄ is denoting closure of S. [41]

Theorem 3.1.4.

Let (M, dp) be a PMS and V ⊂ M then w∗ ∈ V̄ if and only if dp(w
∗, w∗) =

dp(w
∗,V), where V̄ is closure of V. [49]

Proof : Let V ⊂M, (M, dp) is a PMS, let w∗ ∈ V̄ , then for ε > 0. We may write,

Bp(w
∗, ε) ∩ V 6= φ for all ε > 0

⇐⇒ dp(w
∗, w∗0) < ε+ dp(w

∗, w∗) for some w∗0 ∈ V

⇐⇒ dp(w
∗, w∗0)− dp(w∗, w∗) < ε

⇐⇒ inf
w∗

0∈V
{dp(w∗, w∗0)− dp(w∗, w∗)} = 0

⇐⇒ inf
w∗

0∈V
{dp(w∗, w∗0)} = dp(w

∗, w∗)

⇐⇒ dp(w
∗,V) = dp(w

∗, w∗).

Definition 3.1.5. p-convergent Sequence.

Let (M, dp) be a PMS and {an} be a sequence inM, it is called to be p-convergent

at some m0 if and only if

lim
n→+∞

dp(m0, an) = dp(m0,m0). [41]

Definition 3.1.6. p-Cauchy Sequence and Completeness in PMS.

Let (M, dp) be a PMS and {ak} be any sequence in M.

It becomes a p-Cauchy sequence if

lim
n,m→+∞

dp(ak, an),
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exists and is finite.

A PMS is called a complete PMS if every Cauchy sequence {ak} converges in M

w.r.t τp, to a point in m ∈M only if

dp(m,m) = lim
m,n→+∞

dp(ak, an). [41]

Example 3.1.7. Let M = R and dp :M×M→ R+ is defined as

dp(ζ, η) = max(ζ, η),

is a partial metric on M. A sequence

an =
1

4
+

1

n
,

is a p-Cauchy sequence in M. As

dp(an, am) = dp(
1

4
+

1

n
,
1

4
+

1

m
) = max{1

4
+

1

n
,
1

4
+

1

m
},

for higher values of m,n we have

lim
m,n→+∞

dp(an, am) =
1

4
.

Showing that a finite limit exists.

Remark 3.1.8.

Consider dp, a partial metric function onM. We define a map dsp :M×M→ R+

working as

dsp(µ, ζ
∗) = 2dp(µ, ζ

∗)− dp(ζ∗, ν)− dp(ζ∗, ζ∗), (3.1)

for all µ, ν, ζ∗ ∈M, which constructs a metric on M.

This shows that we can always associate a metric space with any PMS, and we

will call it induced partial space, denoted by (M, dsp). [41]

Definition 3.1.9. Continuous Function in PMS.

Let (M, dp) and (N , dp) be partial metric spaces and A ⊂ M. A function f :

A → N is said to be continuous at c ∈ A if for any ε > 0 there is δ > 0 such that
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if a ∈ A:

dp(a, c)− dp(a, a) < δ,

dp(a, c)− dp(c, c) < δ

=⇒

dp(f(a), f(c))− dp(f(a), f(a)) < ε,

dp(f(a), f(c))− dp(f(c), f(c)) < ε. [50]

Lemma 3.1.10.

(i) A sequence is p-Cauchy in any PMS if and only if it is p-Cauchy in the

induced partial space (M, dsp).

(ii) A PMS is complete if and only if the induced partial space (M, dsp) is com-

plete. [41]

Lemma 3.1.11.

Let (M, dp) be a PMS with a compact subset K. Consider a subset B ⊂ K and

define a function S : B → K then we have following two equivalent statements;

(i) S is a continuous function.

(ii) For any convergent subsequence mnk → m0 we have Smnk → Sm0 for any

m0 ∈ B, using compactness of K. [41]

Proof. By using continuity condition, for any ε > 0 there exist a δ > 0 such that,

dp(m,m0)− dp(m0,m0) < δ,

also

dp(m,m0)− dp(m,m) < δ.

=⇒

dp(Sm, Sm0)− dp((Sm0), Sm0) < ε,
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and

dp(Sm, Sm0)− dp(Sm, Sm) < ε.

Now for a convergent subsequence mnk → m0, we can write

dp(mnk ,m0)− dp(m0,m0) < δ,

and

dp(mnk ,m0)− dp(mnk ,mnk) < δ.

Which gives

dp(Smnk , Sm0)− dp(Sm0, Sm0) < ε,

and

dp(Smnk , Sm0)− dp(Smnk , Smnk) < ε.

Showing that,

Smnk → Sm0.

So (i) =⇒ (ii). Now consider Smnk → Sm0 when mnk → m0.

To show that S is a continuous function. Suppose on contrary that S is not a

continuous function then for ε > 0 there must exist a δ > 0 such that, when

dp(m,m0)− dp(m0,m0) < δ,

and

dp(m,m0)− dp(m,m) < δ.

We have,

dp(Sm, Sm0)− dp(Sm0, Sm0) ≥ ε,

and

dp(Sm, Sm0)− dp(Sm, Sm) ≥ ε.

Setting δ = 1
mnk

and for any k ∈ N,

we have

dp(mnk ,m0)− dp(m0,m0) <
1

mnk

,
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also

dp(mnk ,m0)− dp(mnk ,mnk) <
1

mnk

.

Implying

dp(Smnk , Sm0)− dp(Sm0, Sm0) ≥ ε,

and

dp(Smnk , Sm0)− dp(Smnk , Smnk) ≥ ε.

Which means, mnk → m0 but

Smnk 9 Sm0,

which is a contradiction.

Proving that (ii) =⇒ (i).

After introducing partial metric space, Matthews gave a fine generalization of

BCP, which opened doors for other researchers. One can observe the contraction

condition of BCP was used with an additional factor of self distance.

Theorem 3.1.12.

Consider a complete PMS (M, dp) and let S :M→M be a contraction map over

M with c ∈ [0, 1) i.e.,

dp(S(ζ), S(ρ)) ≤ cdp(ζ, ρ) for all ζ, ρ ∈M,

then for each S we must have a unique number ζ∗ ∈ M such that S(ζ∗) = ζ∗.

Also, dp(ζ
∗, ζ∗) = 0. [19]

3.2 Hausdorff Distance in Partial Metric Space.

In 2012, the idea of the Hausdorff metric was merged in the domain of partial

metric space by Aydi et al. [43].

The closedness property of the subsets of a PMS was followed by the induced
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topology on a given set where a bounded set in partial metric space is defined

below.

Definition 3.2.1. Bounded Set in PMS.

Let (M, dp) be a PMS and let N be any non empty subset ofM, then N is called

bounded if for any m0 ∈M there exist an open p-ball centered at m0 with radius

G ≥ 0 and n∗ ∈ Bp(m0, G) where n∗ be any arbitrary element in N , such that

dp(m0, n
∗) < dp(n

∗, n∗) +G. [43]

Definition 3.2.2. Partial Hausdorff Distance.

Let (M, dp) be a PMS and CBp(M) be collection of all non-empty bounded and

closed subsets ofM. For P ,P∗ ∈ CBp(M), partial Hausdorff metric on CBp(M)

induced by dp is given as follow

Hp(P ,P∗) = max{sup
p∈P

dp(p,P∗), sup
q∈P∗

dp(q,P)}. [43]

Example 3.2.3.

Let M = {0, 1, 4} with partial metric dp :M×M → R+, defined as

dp(ζ, ζ
∗) =

1

4
|ζ − ζ∗|+ 1

2
max{ζ, ζ∗},

t can be verified easily that (M, dp) is a PMS.

Now consider two closed and bounded subset inM ,P = {0} and P∗ = {0, 1}.

Next, to calculate the partial Hausdorff distance between P and Q as,

H(P ,P∗) = max{sup
p∈P

dp(p,P∗), sup
q∈P∗

dp(q,P)}

= max{sup
p∈P

dp(p, {0, 1}), sup
q∈P∗

dp(q, {0})}

= max{inf(dp({0}, {0, 1})), sup(dp({0, 1}, {0}))}

= max{3

4
,
3

4
}

=
3

4
.

(3.2)
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Example 3.2.4.

Let M = {0, 1, 4} with dp : M ×M → R+ defined as,

dp(0, 0) = 0 = dp(1, 1), dp(4, 4) =
1

4

dp(0, 1) = dp(1, 0) =
1

4

dp(0, 4) = dp(4, 0) =
1

8

dp(4, 1) = dp(1, 4) =
1

16
.

Consider two closed bounded subsets of P = {0} and Q = {0, 1}, then

Hp(P ,P∗) = max{sup
p∈P

dp(p,P∗), sup
q∈P∗

dp(q,P)}

= max{sup
p∈P

dp(p, {0, 1}), sup
q∈P∗

dp(q, {0})}

= max{inf(dp({0}, {0, 1})), sup(dp({0, 1}, {0}))}

=
1

4
.

Theorem 3.2.5. Every Hausdorff metric is a partial Hausdorff metric.

Proof. Let (M, ď) be metric space and CB(M) be collection of all closed and

bounded subsets of M. Now for P ,P∗ ∈ CB(M) we define a Hausdorff metric

function H : CBp(M)× CBp(M)→ R+, as

H(P ,P∗) = max{sup
p∈P

ď(p,P∗), sup
q∈P∗

ď(q,P)},

then followings conditions are satisfied by H;

P1: H(P ,P∗) ≥ H(P ,P).

P2: H(P ,P∗) = H(P∗,P).

P3: For P ,P∗, R ∈ CBp(M) we have

H(P ,P∗) ≤ H(P ,R) +H(R,P∗)− inf
r∈R

ď(r, r),

showing that (H, CB(M)) is a partial metric space.

The converse of this result generally doesn’t hold.
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Example 3.2.6.

Consider M = [0, 1] equipped with partial metric dp : M×M → R+ defined

as, dp(ζ, η) = max(ζ, η), it is easy to see that M is a closed and bounded set, so

calculating partial Hausdorff distance. We have

Hp(M,M) = sup
m∈M

dp(m,M)

= 1

6= 0.

Showing that (Hp,M) is not a Hausdorff metric space.

Lemma 3.2.7.

Let (M, dp) be a PMS, consider two non empty subsets P ,S ∈ CBp(M) and

k > 1. For any p ∈ P, there exists q ∈ S. Such that

dp(p, q) ≤ kHp(P ,S). [43]

3.3 Multivalued F-contraction Mapping.

This section aims to illustrate basic definitions related to multivalued F -contraction

mapping and to highlight this idea’s importance with the help of examples. We

will present some related fixed point results also.

Definition 3.3.1. Multivalued Mapping.

Let S and N be two non empty sets, f is known as multivalued mapping from set

S into P (N) if each element in S corresponds to any subset f(s) of the set N . [9]

If for each s in S the set f(s) consists of one element, then f is called single-

valued mapping.

Unless otherwise stated, it is always assumed f(s) is nonempty for each s ∈ S.

Let’s have look on some examples;

Example 3.3.2. (i) Consider a map f :M→ N which is not one-one. Then

the inverse image of f would be a multivalued map.
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(ii) LetM = R and N = [1, 10] ⊂M we define a multivalued mapping f : N →

P (N) as follow

f(ξ) = {ξ} for all ξ ∈ N.

(iii) LetM = R and consider any arbitrary c inM, we may define a multivalued

map from M into N ⊂M as follow,

fm = ±
√
c−m2

Figure 3.1: Multivalued Map

(iv) Consider a set M = [0, 1] and let N ⊂M , we can define a multi-valued map

f : M → N as,

fm =


[0, 0.7] if m 6= 0.7

(0.7, 1) if m = 0.7

1 otherwise.

In 1969, Nadler [9] merged the idea of multivalued mapping in the setting of the

fixed point results and gave a very strong generalization of BCP under multivalued

contraction mappings.
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Definition 3.3.3. Fixed Point of Multivalued Mapping

Consider S and N be two non empty sets and f : S → P (N) be a multivalued

mapping . Then s ∈ S is said to be a fixed point of f if s ∈ f(s).

Definition 3.3.4. Multivalued Contraction Mapping.

A function T : M → CB(N ) is called multivalued contraction mapping of M

into N if and only if

H(T p, T q) ≤ λd(p, q), (3.3)

for all p, q in M. here λ ∈ [0, 1). Here CB(N ) is a collection of all closed and

bounded subsets of N and H is Hausdorff distance. [9]

Example 3.3.5.

Let M = R and B = [0, 1] ⊆ R equipped with usual metric and let f : B → B is

given by

f(m) =

0.5m+ 0.5, if m ∈ [0, 0.5]

−0.5m+ 1, if m ∈ [0.5, 1].

F :M→ 2M defined as

F(m) = {f(m)} ∪ {0},

is a multivalued contraction mapping.

Theorem 3.3.6.

Let (M, d̃) be a complete metric space and S : M → CB(M) be a multivalued

contraction mapping, then S has a fixed point c ∈M such that c ∈ S(c). [9]

A new concept was highlighted by Wardowski [51] in 2012, by introducing ∆f -

family. Which was a stronger idea extending the strictly increasing mappings. He

generalized BCP in this new domain too.

Firstly, we define the characteristics of members of this family.

Definition 3.3.7. ∆f -family.

A Mapping F from R+ to R is member of ∆f − family if F satisfies these prop-

erties;
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(F1): F is strictly increasing, i.e.,

ζ < η =⇒ F(ζ) < F(η), for all ζ, η ∈ R.

(F2): For every positive term sequence {aη : η ∈ N},

lim
n→∞

aη = 0 ⇐⇒ lim
n→∞

F(aη) = −∞.

(F3): If we have a c ∈ (0, 1) then,

lim
η→0+

ηcF(η) = 0. [51].

Example 3.3.8.

(i) Let F : R+ → R be defined as

F(p) = ln(p),

one can check easily that F is a member of ∆f -family.

(F1): is clearly satisfied as ln(p) is a strictly increasing function.

(F2): we can a sequence with positive terms i.e

{ak =
1

k
: k ∈ N}

one can see easily lim{ak} −→ 0 for k −→∞. Also

lim
k→∞
F(ak) = lim

k→∞
ln(1/k) = − lim

k→∞
ln(k) = −∞.

(F3): Setting c = 0.5 ∈ (0, 1) and for p = 1.

We have,

lim
p→1+

10.5F(p)

=⇒ 10.5 ln(1) = 0.
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Figure 3.2: A non-decreasing map ln(p)

(ii) Consider another map, F : R+ → R defined as

F(ξ) =
−1√
ξ
,

it is easy to see that this is also a member of ∆f − family.

Definition 3.3.9. F-contraction.

In a metric space (M, d) the map S :M→M is known as F -contraction on M,

if for all m,n in M we have

d(Sm, Sn) > 0 =⇒ τ + F(d(Sm,Sn)) ≤ F(d(m,n)), (3.4)

where F ∈ ∆f -family and τ > 0. [51]

Theorem 3.3.10.

Consider complete metric space (M, d), and let T :M→M be an F-contraction.

Then T has a unique fixed point m∗ ∈ M and for every m0 ∈ M a sequence

T n(m0) is convergent to m∗. [51]
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Definition 3.3.11. Multivalued F-contraction Mapping.

Consider (M, dp) be a PMS and a map S :M→ CBp(M), then S is called MVF -

CM, if there is F ∈ ∆f − family such that

Hp(Sm,Sn) > 0

=⇒ τ + F(Hp(Sm,Sn)) ≤ F(dp(m,n)). (3.5)

where τ > 0. [41]

By integrating the concept of multivalued contraction condition into the F map-

pings, Altun et al [52] presented following results in 2015.

Theorem 3.3.12.

Consider a complete metric space (M, d) and T : M → K be a multivalued F-

contraction mapping, then T has a fixed point, where K is any compact subset of

M.

Theorem 3.3.13.

Consider a complete metric space (M, d̃) and let F :M→ CB(M) be a set-valued

F-contraction map satisfying

F(inf P ) = inf(F(P )), (3.6)

for all P ⊂ R+ and inf(P ) > 0, then f has a fixed point

3.4 Fixed Point Theorems with F-contraction

mapping in PMS.

Two strong theorems and some useful examples taken from [41], are presented

here.

An application is also given which emphasizes the importance of these theorems

in PMSs.
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Theorem 3.4.1.

Let (M, dp) be a complete PMS. If S :M→ K(M) be a multivalued F-contraction,

then S has a fixed point.

Proof. We take an arbitrary m0 ∈M, as Sm being set of all images of m ∈M is

non empty for all values in M, we can select m1 ∈ Sm0.

If

m1 ∈ Sm1,

this means that m1 is the fixed point of S trivially.

Suppose

m1 /∈ Sm1,

as Sm1 is closed so we have

dp(m1, Sm1) > 0.

Also we know that

dp(m1, Sm1) ≤ Hp(Sm0, Sm1). (3.7)

Now let F ∈ ∆f − family, and as F so by its property of being non-decreasing,

we have

F(dp(m1, Sm1)) ≤ F(Hp(Sm0, Sm1)), (3.8)

from the contractive condition

F(dp(m1, Sm1)) ≤ F(Hp(Sm0, Sm1)) ≤ F(dp(m0,m1))− τ. (3.9)

As Sm1 is compact so there exists m2 ∈ Sm1, such that

dp(m1,m2) = dp(m1, Sm1),

F(dp(m1,m2)) ≤ F(Hp(Sm0, Sm1)) ≤ F(dp(m1,m0))− τ. (3.10)
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Following the same procedure repeatedly, we have {mη} ∈ M such that

mη+1 ∈ Smη, with

F(dp(mη,mη+1) ≤ F(dp(mη,mη−1))− τ for all η ∈ N. (3.11)

If there exists η0 ∈ N for which we have mη0 ∈ Smη0 , then mη0 will be the fixed

point S trivially. So set mη0 /∈ Smη0 for every η ∈ N.

For convenience we are setting vη = dp(mη,mη+1) where η = 0, 1, 2..... Clearly

vη > 0 for all η ∈ N. Now, substituting these in the above equation, we have

F(vη) ≤ F(vη−1)− τ

≤ F(vη−2)− 2τ ≤

.

.

..

≤ F(v0)− ητ,

(3.12)

=⇒ lim
η→∞
F(vη) = −∞.

Then by 2nd property of F ∈ ∆f − family, we have

lim
η→∞

vη = 0,

then by using 3rd property of F ∈ ∆f − family we have α ∈ (0, 1)

such that

lim
η→∞

vη
αF(vη) = 0,

for all η ∈ N, we can write

vη
α(F(vη)−F(v0)) ≤ −vηαητ ≤ 0, (3.13)

for higher values of η we have

vη
αη = 0.
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So there exists a η1 ∈ N such that,

vη
αη ≤ 1

for all η ≥ η1,

vη ≤
1

η
1
α

.

Now we will prove that {mη} is a Cauchy sequence in M. For this let η, l ∈ N

provided that η > l ≥ η1,

consider generalized triangular inequality of PMS

dp(mη,ml) ≤ dp(mη,mη+1) + dp(mη+1,mη+2) + .....+ dp(ml−1,ml)−
l−1∑

j=η+1

dp(mj,mj)

≤ dp(mη,mη+1) + dp(mη+1,mη+2) + .....+ dp(ml−1,ml)

= vη + vη+1 + vη+2 + ......vl−1

=
l−1∑
β=η

vβ

≤
∞∑
β=η

vβ

≤
∞∑
β=η

1

β
1
α

.

Which is a convergent series showing that

lim
η→∞

dp(mη,ml) = 0.

Now using (3.1) for any η, l ∈ N, we have

ps(mη,ml) = 2dp(mη,ml)− dp(mη,mη)− dp(ml,ml) ≤ 2dp(mη,ml) −→ 0,

for n −→∞.

Which shows {mη} is Cauchy sequence w.r.t (M, dsp) and hence convergent in

(M, dp), so there exists m∗ ∈M such that

lim
η→∞

ps(mη,m
∗) = 0.
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Now for all m,n ∈M with Hp(Sm, Sn) > 0, We have

Hp(Sm, Sn) < dp(m,n).

Thus

dp(mη+1, Sm
∗) ≤ Hp(Smη, Sm

∗) ≤ dp(mη,m
∗), (3.14)

it can be observed for high values of η, we will get

dp(m
∗, Sm∗) = 0.

This gives m∗ ∈ S̄m∗ = Sm∗.

Proving that m∗ if the fixed point of S.

Theorem 3.4.2.

Let (M, dp) be a complete PMS and let S : M → CB(M) be a multivalued F-

contraction mapping where B ⊂ (0,∞) with inf B > 0 if F satisfies

F(inf B) = inf F(B), (3.15)

then S has a fixed point.

Proof. We take an arbitrary m0 ∈ M, as Sm being set of all images of m ∈ M,

is non empty for all elements in M, we can choose m1 ∈ Sm0. If that m1 ∈ Sm1

this means that m1 is the fixed point of S trivially.

Suppose m1 /∈ Sm1, as m1 is closed so we have

dp(m1, Sm1) > 0.

As we know that

dp(m1, Sm1) ≤ Hp(Sm0, Sm1).

Now let F ∈ ∆f − family, so by its property of being non-decreasing, we have

F(dp(m1, Sm1)) ≤ F(Hp(Sm0, Sm1)),
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from the contractive condition,

F(dp(m1, Sm1)) ≤ F(Hp(Sm0, Sm1)) ≤ F(dp(m0,m1))− τ.

Using (3.15)

F inf(dp(m1, Sm1)) = inf
g∈Sm1

F(dp(m1, g)).

We may write as,

inf
g∈Sm1

F(dp(m1, g)) ≤ F(dp(m1,m0))− τ ≤ F(dp(m1,m0))−
τ

2
.

Now for some m2 ∈ Sm1, such that

F(dp(m1,m2)) ≤ F(dp(m1,m0))−
τ

2
.

If m2 ∈ Sm2, then we have nothing to prove, so set m3 ∈ Sm2, we will get

F(dp(m2,m3)) ≤ F(dp(m2,m1))−
τ

2
.

Continuing in same manner we have a sequence {mη} in M such that

mη+1 ∈ Smη,

and for all η ∈ N, we have

F(dp(mη,mη+1)) ≤ F(dp(mη,mη−1))−
τ

2
.

If there exists η0 ∈ N for which we have mη0 ∈ Smη0 , then mη0 will be the fixed

point S trivially, so let

mη0 /∈ Smη0

for every η ∈ N.

For the convenience we are setting

wη = dp(mη,mη+1)
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where η = 0, 1, 2..... Clearly wη > 0 for all η ∈ N.

Now substituting these in above equation, we have

F(wη) ≤ F(wη−1)−
τ

2

≤ F(wη−2)−
2τ

2

.

.

≤ F(w0)−
ητ

2
.

=⇒ lim
n→∞

F(wη) = −∞.

Then by 2nd property of F ∈ ∆f − family, we have

lim
η→∞

wη = 0,

then by using 3rd property of F ∈ ∆f − family we have β ∈ (0, 1) such that

lim
η→∞

wη
βF(wη) = 0,

for all η ∈ N.

wη
β(F(wη)−F(w0)) ≤ −wηβ

ητ

2

≤ 0

for higher values of η we have

wη
βη = 0

So there exists a η1 ∈ N such that,

wη
βη ≤ 1

for all η ≥ η1, So

wη ≤
1

η
1
β

.
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Now we will prove that {mη} is a Cauchy sequence in M.

For this let η, l ∈ N provided that

η > l ≥ η1.

Consider the generalized triangular inequality of PMS,

dp(mη,ml) ≤ dp(mη,mη+1) + dp(mη+1,mη+2) + .....+ dp(ml−1,ml)−
l−1∑

j=η+1

dp(mj,mj)

≤ dp(mη,mη+1) + dp(mη+1,mη+2) + .....+ dp(ml−1,ml)

= wη + wη+1 + wη+2 + ......wl−1

=
l−1∑
β=η

wγ

≤
∞∑
β=i

wγ

≤
∞∑
β=η

1

γ
1
β

.

Which is a convergent series, showing that

lim
η→∞

dp(mη,ml) = 0.

Now using (3.1) for any η, l ∈ N, we have

ps(mη,ml) = 2dp(mη,ml)− dp(mη,mη)− dp(ml,ml) ≤ 2dp(mη,ml) −→ 0,

ps(mη,ml) −→ 0,

for n −→∞.

Which shows {mη} is Cauchy sequence w.r.t (M, dsp) and hence convergent in

(M, dp).

So there exists u∗ ∈M, such that

dp(u
∗, u∗) = lim

η→∞
dp(mη, u

∗) = lim
η,l→∞

dp(mη,ml).
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Now we will prove that u∗ is the fixed point of S. As, we have

τ + F(Hp(Smη, Su
∗)) ≤ F(dp(mη, u

∗)).

We get limn→∞Hp(Smη, Su
∗) = 0, from mη+1 ∈ Smη,

dp(mη+1, Su
∗) ≤ dp(Smη, Su

∗) ≤ Hp(Smη, Su
∗).

Showing that

lim
η→∞

(Smη+1, Su
∗)

.

By using the triangular inequality of PMS, we have

dp(u
∗, Su∗) ≤ dp(u

∗,mη+1) + dp(mη+1, Su
∗)− dp(mη+1,mη+1).

For n −→∞, we observe

dp(u
∗, Su∗) −→ 0

. This gives

u∗ ∈ S̄u∗ = Su∗.

Proving that u∗ is the fixed point of S.

We will apply the above result to the following examples to illustrate its impor-

tance.

Through these examples one can easily understand the existence of fixed points

with help of above defined results.

Example 3.4.3. Let M = {0, 1, 2, 3} be our ground set, we define a metric dp :

M ×M → R+ as

dp(ζ, %
∗) =

1

4
|ζ − %∗|+ 1

2
max{ζ, %∗},

firstly we will show that above defined metric is a partial metric on M for all

ζ, %∗ ∈M .
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P1: Let ζ ≥ %∗ then

dp(ζ, %
∗) =

1

4
|ζ − %∗|+ 1

2
max{ζ, %∗}

=
1

4
|ζ − %∗|+ 1

2
ζ

≥ 1

4
|ζ − %∗|+ 1

2
%∗

= dp(%
∗, %∗).

=⇒ dp(ζ, %
∗) ≥ dp(%

∗, %∗),

i.e., self distance is less than the distance of two distinct elements in M .

P2: Consider ζ = %∗, then

dp(ζ, %
∗) =

1

4
|ζ − %∗|+ 1

2
max{ζ, %∗}

=
1

4
|ζ − ζ|+ 1

2
ζ

=
1

2
ζ

=
1

2
%∗

=
1

4
|%∗ − %∗|+ 1

2
%∗

= dp(%
∗, %∗)

= dp(ζ, ζ).

Conversely, setting

dp(ζ, ζ) = dp(%
∗, %∗) = dp(ζ, %

∗),

by comparing the first two, we will easily get

ζ = %∗

so comparing the other two, we have

1

4
|ζ − %∗|+ 1

2
max{ζ, %∗} =

1

4
|%∗ − %∗|+ 1

2
max{%∗, %∗}.
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On the contrary, suppose that

ζ 6= %∗

this means either ζ < %∗ or ζ > %∗, considering the first case,

1

4
|ζ − %∗|+ 1

2
max{ζ, %∗} =

1

2
%∗,

or
1

4
|ζ − %∗|+ 1

2
%∗ =

1

2
%∗.

=⇒ |ζ − %∗| = 0.

Which shows

ζ = %∗,

which is a contradiction.

We will get the same for the second possible case. So we have

dp(ζ, ζ) = dp(%
∗, %∗) = dp(ζ, %

∗) ⇐⇒ ζ = %∗

for all values on M .

P3: Clearly, symmetry follows because of the symmetric property of maximum

function and the absolute value of elements.

P4: Let ζ, %∗, γ ∈M having a relationship ζ ≥ γ ≥ %∗.

Consider

dp(ζ, %
∗) =

1

4
|ζ − %∗|+ 1

2
max{ζ, %∗}

=
1

4
|ζ − %∗|+ 1

2
ζ

=
1

4
|ζ − γ + γ − %∗|+ 1

2
ζ

≤ 1

4
|ζ − γ|+ 1

4
|γ − %∗|+ 1

2
ζ

=
1

4
|ζ − γ|+ 1

4
|γ − %∗|+ 1

2
ζ +

1

2
γ − 1

2
γ

= dp(ζ, γ) + dp(γ, %
∗)− dp(γ, γ),
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so for all ζ, %∗, γ ∈M .

We have

dp(ζ, %
∗) ≤ dp(ζ, γ) + dp(γ, %

∗)− dp(γ, γ).

Showing that (M,dp) is a PMS.

Now, we define a multivalued mapping S : M → CBp(M)

Sm =

{2, 3} if m = 3

{3} if m 6= 3.

Also we need to define a F map.

So consider a function F : R+ → R as

F(α) = ln(α),

for α ∈ R+.

Next, to show that F satisfies the condition of multivalued F -contraction. For

this consider m 6= 3 and τ = ln
(

4
35

)
, we have

τ + F(Hp(Sm, S3)) = τ + ln(Hp(Sm, S3)

= τ + ln
(

max{inf dp({3}, {2, 3}), sup dp({2, 3}, {3})}
)

= τ + ln
(

max{inf{dp{(3, 2), dp(3, 3)}, sup{dp{(3, 2), dp(3, 3)}}
)

= τ + ln
(

max{inf{7

4
,
3

2
}, sup{7

4
,
3

2
}}
)

= τ + ln
(

max{3

2
,
7

4
}
)

= τ + ln
(7

4

)
= ln

( 4

35

)
+ ln

(7

4

)
= ln

(1

5

)
≤ ln

(1

4

)
≤ ln

(1

4
|m− 3|+ 3

2

)
= ln dp(m, 3)

= Fdp(m, 3),
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showing that S satisfies the multivalued F -contraction condition.

Hence m = 3 is a fixed point of S.

Example 3.4.4.

Consider a complete PMS (M,dp), where

M =

{
mk = 1−

(
1

2

)k
: k ∈ N

}
,

and metric function is defined as

dp(ζ, η) = |ζ − η|.

We define a multivalued mapping S : M → CBp(M) as

Sm =

{m1} if m = m1

{mη,mη−1} if m = mη.

Now define a F map, as F : R+ → R

F(α) = ln(α),

for α ∈ R+.

Next to show that F satisfies condition of multivalued F -contraction, i.e. if

Hp(Sm, Sn) > 0

=⇒ τ + F(Hp(Sm, Sn)) ≤ F(dp(m,n)

τ + ln(Hp(Sm, Sn)) ≤ ln(dp(m,n))

Hp(Sm, Sn) ≤ dp(m,n)e−τ .

We have the following two cases;

Case:-I For η, l ∈ N with η = 1, l > η + 1 and Hp(Smη, Sml) > 0,

Hp(Smη, Sm1) ≤ dp(mη,m1)e
−τ ,
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then by calculating the Hausdorff distance, we have

Hp(Smη, Sm1) = max{sup dp({mη,mη−1}, {m1}), inf dp({mη,mη−1}, {m1})}

= max{sup{|mη −m1|, |mη−1,m1|}, inf{|mη −m1|, |mη−1,m1|}

= max{|mη −m1|, |mη−1,m1|}

= |mη−1 −m1|.

Setting back,

|mη−1 −m1| ≤ dp(mη,m1)e
−τ ,

or

|mη−1 −m1| ≤ |mη −m1|e−τ .

It follows that for η ∈ N

1−
(1

2

)η−1 ≤ (1−
(1

2

)η)
e−τ .

Case:-II For η, l ∈ N, provided that

η > l > 1

and

Hp(Smη, Sml) > 0

,

Hp(Smη−1, Sml−1) ≤ dp(mη,m1)e
−τ .

Again calculating Hausdorff distance, we easily get

Hp(Smη−1, Sml−1) = |mη−1 −ml−1|,

finally setting these values back in required condition, we get

(1

2

)η−1 − (1

2

)l−1 ≤ ((1

2

)η − (1

2

)l)
e−τ .

One can observe that in both cases, the required condition is satisfied.
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3.5 Application

This section is designed to highlight the importance of the above-proved theorem

with the help of the following application.

Suppose I = [0, 1], andM = C(I,R2) be the collection of all continuous functions

defined from I to R2, endowed with usual sup-norm. We define a partial metric

function on M, as

pb(φ, ψ) = ‖ φ− ψ ‖∞

=⇒ pb(φ, ψ) = sup
m∈I
{e−mp|φ(m)− ψ(m)|} p > 1,

for all φ, ψ ∈M.

It is easy to verify that (M, pb) is a complete PMS.

Theorem 3.5.1.

Suppose that the following conditions hold:

(i) Let Kφ : I × I × R2 → R2 and f : I → R2 be continuous;

(ii) there exists φ0 ∈M such that φk ∈ Sφk−1;

(iii) there exists a continuous function f : I × I → I such that

|kφ(ξ, x∗, φ(x∗))− kψ(ξ, x∗, ψ(x∗))| ≤ sup
x∗∈I

f(φ(x∗), ψ(x∗))|φ(x∗)− ψ(x∗)|,

for each ξ, x∗ ∈ I and f(φ(x∗), ψ(x∗)) ≤ γ.

Then the integral equation

φ(ξ) = ω(ξ) + ν

∫ 1

0

Kφ(ξ, x∗, φ(x∗))dx∗, (3.16)

has a solution.

Proof. Let (M, dp) be a complete PMS. Firstly, we define S :M→ B(M), as

S(φ(ξ)) = {φ∗(ξ) : φ∗(ξ) ∈ ω(ξ) +

∫ 1

0

Kφ(ξ, x∗, φ(x∗))dx∗}, (3.17)
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for each φ(ξ) ∈M. Also, for every Kφ : I × I × R2 → B(M) there exists

kφ(ξ, x∗, φ∗) ∈ Kφ(ξ, x∗, φ∗).

We need to define F map also, so let F(ξ) = ln(ξ), for all ξ ∈M.

So after going through natural logarithm, our condition will be,

Hdp(S((φ), S(ψ)) ≤ e−τdp(ψ, φ).

Now for φ∗ ∈ S(φ),we have

dp((φ
∗(ξ), S(ψ(ξ)))) ≤ dp(φ

∗(ξ), (ψ∗(ξ)))

= sup
ξ∈I

e−ξγ|φ∗(ξ)− ψ∗(ξ)|

= sup
ξ∈I

e−ξγ|
∫ 1

0

kφ(ξ, x∗, φ(x∗))− kψ(ξ, x∗, ψ(x∗))dx∗|

= sup
ξ∈I

e−ξγ
∫ 1

0

|e−x∗γ+x∗γkφ(ξ, x∗, φ(x∗))− kψ(ξ, x∗, ψ(x∗))|dx∗

≤ sup
ξ∈I

e−ξγ
∫ 1

0

ex
∗γf(φ(x∗), ψ(x∗)) sup

x∗∈I
e−x

∗γ|φ(x∗)− ψ(x∗)|dx∗

≤ γ ‖ φ(x∗)− ψ(x∗) ‖∞ sup
ξ∈I

e−ξγ
∫ 1

0

ex
∗γdx∗

= dp(φ(x∗), ψ(x∗))(1)(eγ − 1)

≤ dp(φ(x∗), ψ(x∗))eγ

Also, as φ∗ is arbitrary, so we have

δdp(S(φ), S(ψ)) ≤ eγdp(φ, ψ)

Similarly, one can calculate

δdp(S(ψ), S(φ)) ≤ eγdp(φ, ψ),

finally, we have,

Hdp(S(φ), S(ψ)) ≤ eγdp(φ, ψ).

Or equally Hdp(S(φ), S(ψ)) ≤ e−τdp(φ, ψ).
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This shows our desired contraction condition is satisfied by choice of −τ = γ

All conditions of 3.4.1 are satisfied, showing that integral equation (3.16) has a

solution.



Chapter 4

Fixed Point Results for

Multivalued αF-Contraction in

PbMS

A direction for the extension of the metric space was given by Satish Shukla [35]

in 2014. He coordinated the directions of both partial metric space and b-metric

space together and presented a new version of BCP in partial b-metric space. A

detailed review of his work is unveiled in the forthcoming section.

After that, we headlined the idea of the Hausdorff distance under the umbrella

of partial b-metric space. In this chapter, the idea of α-admissible mappings is

also portrayed under multivalued F contractive maps along with a new extension

of BCP. Lastly, we mentioned an application of this theorem which features the

existence of the solution to a Fredholm integral equation.

4.1 Partial b-metric space

We begin this section with the concept of PbMS, in which we consider the im-

portance of the non-zero self distance likewise the coefficient b ≥ 1 appearing in

triangular inequality of b-metric space.

59
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Definition 4.1.1. Partial b-metric space

LetM 6= φ and b ≥ 1 be any real number, the metric function pb :M×M→ R+

satisfying following properties on M is called a partial b metric on M.

ṕb(1): pb(µ, υ) = pb(µ, µ) = pb(υ, υ) if and only if µ = υ;

ṕb(2): pb(µ, υ) ≥ pb(µ, µ);

ṕb(3): pb(µ, υ) = pb(υ, µ);

ṕb(4): pb(µ, υ) ≤ b{pb(µ, k) + pb(k, υ)} − pb(k, k),

for all µ, υ, k ∈M.

The pair (M, pb) is called a partial b-metric space with coefficient b ≥ 1.

Remark 4.1.2.

If we ignore the self distance by assuming it zero PbMS will become bMS, and if

we set the coefficient of PbMS equals to 1, then it will be simply a PMS. But the

converse of this fact isn’t true in general. For this, consider the following example;

Example 4.1.3.

Let M = R+ we define a the metric function pb :M×M→M working as

pb(ξ, µ) =| ξ − µ |q +[max{ξ, µ}]q for all ξ, µ ∈M,

q > 1 be any constant.

We will show that this defines a partial b-metric function on M.

ṕb(1): Setting ξ = µ

pb(ξ, µ) = |ξ − µ|q + [max{ξ, µ}]q

= |ξ − ξ|q + [max{ξ, ξ}]q

= [max{ξ, ξ}]q

= ξq

= µq

= [max{µ, µ}]q

= |µ− µ|q + [max{µ, µ}]q

= pb(µ, µ)

= pb(ξ, ξ).
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Conversely, setting,

pb(ξ, ξ) = pb(µ, µ) = pb(ξ, µ),

by comparing the first two, we will easily get ξ = µ, so consider the other two we

have

pb(µ, µ) = pb(ξ, µ),

this will give

|µ− µ|q + [max{µ, µ}]q = |ξ − µ|q + [max{ξ, µ}]q.

On the contrary, suppose that

ξ 6= µ

.

This means either ξ < µ or ξ > µ, for the first case

µq = |ξ − µ|q + µq,

=⇒ |ξ − µ|q = 0 or |ξ − µ| = 0

which shows ξ = µ which is a contradiction. We will get the same for the second

possible case.

So we have

pb(ξ, ξ) = pb(µ, µ) = pb(ξ, µ) ⇐⇒ ξ = µ.

ṕb(1): Let ξ ≥ µ, then

pb(ξ, µ) = |ξ − µ|q + [max{ξ, µ}]q

= |ξ − µ|q + ξq

≥ |ξ − µ|q + µq

≥ |ξ − µ|q + [max{µ, µ}]q

= pb(µ, µ),

=⇒ pb(ξ, µ) ≥ pb(µ, µ),

i.e., self distance is less than the distance of two distinct elements in M.
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ṕb(1): It is easy to see that symmetry follows because of the symmetric property

of maximum function and the absolute value of elements.

ṕb(1) : Let for arbitrary ξ, µ, γ ∈M have a relationship ξ ≥ γ ≥ µ.

Consider,

pb(ξ, µ) = |ξ − µ|q + [max{ξ, µ}]q

= |ξ − µ− γ + γ|q + [max{ξ, µ}]q

≤ {2q−1|ξ − γ|q + |γ − µ|q}+ ξq

= b{|ξ − γ|q + |γ − µ|q}+ ξq

≤ b{|ξ − γ|q + |γ − µ|q + ξq}

= b{|ξ − γ|q + ξq}+ b|γ − µ|q

≤ b{|ξ − γ|q + ξq}+ b{|γ − µ|q + γq|} − γq

= b{pb(ξ, γ) + pb(γ, µ)} − pb(γ, γ),

so for all ξ, µ, γ ∈M.

We have,

pb(ξ, µ) ≤ b{pb(ξ, γ) + pb(γ, µ)} − pb(γ, γ),

showing that (M, pb) is a PbMS with

b = 2q−1.

It is also easy to check that this defined metric neither satisfies the condition of

PMS nor of bMS. One can easily verify the triangular inequalitie of both spaces

may fail here.

Proposition 4.1.4.

Let M be a non empty set with some defined metric function on it such that

(M, dp) and (M, db) are PMS and bMS respectively.

Then we can always construct a PbMS on M as follow,

pb(m,n) = dp(m,n) + db(m,n), (4.1)
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for all m,n ∈M and b > 1. [35]

Proof. Let (M, dp) be a PMS and (M, db) be a bMS with coefficient b > 1.

One can easily verify that pb(1)- pb(3) are obviously true for (4.1).

For pb(4) let ξ, η, k ∈M , then using triangular inequality,

pb(ξ, η) = dp(ξ, η) + db(ξ, η)

≤ dp(ξ, k) + dp(k, η)− dp(k, k) + b{db(ξ, k) + db(k, η)}

≤ b{dp(ξ, k) + dp(k, η)− dp(k, k) + db(ξ, k) + db(k, η)}

= b{pb(ξ, k) + pb(k, η)− pb(k, k)}

≤ b{pb(ξ, k) + pb(k, η)} − pb(k, k),

which completes the proof.

Proposition 4.1.5.

Let (M, dp) be a PMS and consider any positive number k ≥ 1. Then we can

always construct a PbMS onM from this partial metric by the following condition

pb(m,n) = {dp(m,n)}k,

with b = 2k−1.

Definition 4.1.6. Open partial b-ball.

Let (M, pb) be a PbMS then an open partial b-ball of radius ε > 0 ∈ R with center

µ ∈M, is defined as,

Bpb(µ, ε) = {n ∈M : pb(µ, n) < pb(µ, µ) + ε},

for all µ ∈M.

Remark 4.1.7.

We can always induce a T0 topology τb on every PbMS provided that family of

open partial b-ball

{Bpb(µ, ε) : µ ∈M, ε > 0},

is subbase for this topology.
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Definition 4.1.8. Convergence and Completeness PbMS.

Let (M, pb) be a PbMS with b ≥ 1. Consider {mk} be any sequence in M also

some m0 ∈M be any arbitrary element.

Then we have the following results for convergence:

(i) The sequence {mk} in is called convergent sequence with respect to τb with

limit m0 if

lim
k→∞

pb(mk,m0) = pb(m0,m0).

For example, consider M = [0, 1] and let

mη =
{1

η
: η ∈ N

}
,

we define a map pb :M×M→ R+ as

pb(ξ, ζ) = |ξ − ζ|5 + v,

it is easy to see that (M, pb) is a PbMS with b=24.

As

lim
η→∞

pb(mη, 0) = lim
η→∞

pb
(1

η
, 0
)

= lim
η→∞

[∣∣∣∣1η − 0

∣∣∣∣+ v

]
= pb(0, 0).

Showing that {mη} is a convergent sequence in (M, pb) .

(ii) A sequence {mk} in M becomes a Cauchy sequence if

lim
k,l→∞

pb(mk,ml),

exists and is finite.

(iii) (M, pb) is called a complete PbMS if every Cauchy sequence converges in

M.

The famous BCP was generalized by Shukla [35] in his paper after introducing the

PbMS, which is given below.



F ixed Point Results for Multivalued αF-Contractions in PbMS 65

Theorem 4.1.9.

Let (M, pb) be a PbMS with b ≥ 1. Consider a self map F : M → M with

following condition

pb(F(ζ),F(ξ)) ≤ α(pb(ζ, ξ)),

for all ζ, ξ ∈M and α ∈ [0, 1), then F has a unique fixed point with pb(ζ, ζ) = 0.

4.2 Hausdorff metric in PbMS.

The idea of Hausdorff distance emerged in the setting of partial b-metric space by

Felhi [53] in 2016 by extending the work of Aydi [43]. He presented some properties

of the Hausdorff metric function in the context of PbMS.

His work was expanded with some more advanced results by Saeed et al. in

February 2022 [54]. Some useful results from this article are mentioned below

which are going to be used in demonstrating our main theorem.

Definition 4.2.1. Closed set in PbMS.

Let (M, pb) be PbMS. A set K ⊂ M is called closed in (M, pb) if and only if

K = K̄, here K̄ represents closure of K.

Definition 4.2.2. Bounded set in PbMS.

Let (M, pb) be a PbMS and let φ 6= N ⊂M, then N is called bounded if for any

m0 ∈ M there exist an open partial b-ball centered at m0 with radius R∗ ≥ 0 for

n ∈ Bp(m0, R
∗) where n be any arbitrary element in N , such that

dp(m0, n) < dp(n, n) +R∗.

Definition 4.2.3. Hausdorff distance in PbMS.

Let (M, pb) be a PbMS with b ≥ 1, and CBpb(M) be the collection of all non-

empty bounded and closed subsets of M, For P ,Q ∈ CBpb(M) , partial b Haus-

dorff b metric on CBpb(M) induced by pb is given as follow,

Hpb(P ,Q) = max{δpb(P ,Q), δpb(Q,P)},
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where

δpb(P ,Q) = sup{pb(p,Q) : p ∈ P},

and

δpb(Q,P) = sup{pb(q,P) : q ∈ Q}.

Example 4.2.4.

Let M = {0, 1, 4} with partial metric pb :M×M→ R+, defined as

pb(ζ, µ) = |ζ − µ|2 + max{ζ, µ}2,

one can check that (M, pb) is a PbMS with b = 2.

Now consider two closed and bounded subset in M as, P = {0} P∗ = {0, 1}.

Next, to calculate the partial Hausdorff distance between P and P∗, that is

Hpb(P ,P∗) = max{δpb(P ,P∗), δpb(P∗,P)}

= max{sup
p∈P

dp(p, {0, 1}), sup
q∈P∗

dp(q, {0})}

= max{inf(dp({0}, {0, 1})), sup(dp({0, 1}, {0}))}

= max{0, 2}

= 2.

(4.2)

Lemma 4.2.5.

Let (M, pb) be a PbMS with b ≥ 1, Consider two non empty subsets P ,P∗ ∈

CBpb(M) and k∗ > 1. For any p ∈ P there exists q ∈ P∗ such that

pb(p, q) ≤ k∗Hpb(P ,P∗).

Proof. We have the following two cases,

Case I: If P = P∗, then

Hpb(P ,P∗) = δpb(P ,P∗) = sup
p∈P

dp(p, p) ≤ k∗ sup
p∈P

dp(p, p),
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for k∗ > 1.

Showing that,

Hpb(P ,P∗) ≤ k∗Hpb(P ,P∗).

Case II: If P 6= P∗,

On the contrary suppose that there exists any p ∈ P , such that

dp(p, q) > k∗Hpb(P ,P∗),

then we may write as

inf
q∈P∗

dp(p,P∗) > k∗Hpb(P ,P∗),

for all q ∈ P∗.

=⇒ dp(p,P∗) ≥ k∗Hpb(P ,P∗).

Consider,

Hpb(P ,P∗) ≥ sup
p∈P

dp(p,P∗) ≥ dp(p,P∗) ≥ k∗Hpb(P ,P∗),

as P 6= P∗ this means Hpb(P ,P∗) 6= 0 then we must have k∗ ≤ 1.

Which is a contradiction. So from both cases, we conclude

dp(p, q) ≤ k∗Hpb(P ,P∗),

for k∗ > 1.

Lemma 4.2.6.

Consider (M, pb) be a partial b-metric space with b ≥ 1, then for two non empty

subsets P ,P∗ ∈ CBpb(M) we have,

Hpb(P ,P∗) = 0 ⇐⇒ P = P∗.

Lemma 4.2.7.

Let (M, pb) be a partial b-metric space with b ≥ 1, and we have two non empty

subsets P ,P∗ ∈ CBpb(M).
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Then for each p ∈ P we have,

pb(p,P∗) ≤ Hpb(P ,P∗).

4.3 Some Necessary Ingredients.

Before stating our main result, we are going to mention some necessary definitions;

without these ideas, our theorem would be fragmented.

Firstly, we will look at the concept of α-admissible mappings given in 2012 by

Samet et al. [42].

Definition 4.3.1. α-admissible mapping.

Let M be a non empty set we define a self map Kα : M → M. Also define

α :M×M→ R+ then Kα is called an α-admissible mapping if following condition

holds for ξ, ζ ∈M

α(ξ, ζ) ≥ 1

=⇒ α(Kα(ξ),Kα(ζ)) ≥ 1.

Example 4.3.2.

Let M = {(0, b) : b > 0} ⊂ R+, we define a self map Kα :M→M as

Kα(m) = ln(m)

for all m ∈M, and α :M×M→ R+ is defined as follow

α(m,n) =

2 if m ≥ n

0 otherwise.

It is easy to observe that ln(m) being an increasing function will satisfy the con-

dition as

m ≥ n =⇒ Kα(m) ≥ Kα(n)

so whenever we have

α(m,n) ≥ 1
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we must have

α(Kα(m),Kα(n)) ≥ 1.

Thus Kα is an α-admissible mapping.

Example 4.3.3.

Let {M = [0, b) : b > 0} ⊂ R+ and a self map Kα :M→M, is defined as

Kα(m) =
√
m for all m ∈M,

and α :M×M→ R+ is defined as follow

α(m,n) =

e
m−n if m ≥ n

0 otherwise.

This defined Kα is an α-admissible mapping.

Figure 4.1: A graph showing α-admissibility

Remark 4.3.4.

Every non-decreasing self map is an α-admissible map.

Definition 4.3.5. Multivalued α-admissible mapping.

Consider a set M 6= φ and let Tα : M → 2M be a multivalued mapping. Also,
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define α : M×M → R+ then Tα is called multivalued α-admissible mapping if

for m,n ∈M we have

α(m,n) ≥ 1 =⇒ α(m0, n0) ≥ 1,

where m0 ∈ Tα(m) and n0 ∈ Tα(n).

Definition 4.3.6. F-Contraction in PbMS.

Let (M, pb) be a PbMS with b ≥ 1, a self map S : M → M is said to be an

F -contraction on M, if there exists a τ > 0 such that for all m,n ∈M

pb(m,n) > 0 =⇒ τ + F(pb(Sm, Sn)) ≤ F(pb(m,n)), (4.3)

where F ∈ ∆f -family.

Definition 4.3.7. Multivalued F-Contraction Mapping.

Let (M, pb) be a PbMS with b ≥ 1 and define a map S :M→ K(M), then S is

said to be a MVF -contraction mapping, if F ∈ ∆f − family and for any τ > 0,

Hpb(Sm1, Sm2) > 0 =⇒ τ + F(bHpb(Sm1, Sm2)) ≤ F(M(m1,m2)), (4.4)

where

M(m1,m2) = max
{
pb(m1,m2), pb(m1, Sm1), pb(m2, Sm2),

pb(m1, Sm2) + pb(m2, Sm1)

2b

}
.

Definition 4.3.8. Multivalued αF-Contraction Mapping.

Let (M, pb) be a PbMS with b ≥ 1, then S : M → K(M) is said to be a

MVαF -contraction mapping, if F ∈ ∆f − family and for any τ > 0 such that,

Hpb(Sm1, Sm2) > 0 =⇒ τ + F(α(m1,m2)(bHpb(Sm1, Sm2))) ≤ F(M(m1,m2)),

(4.5)

where

M(m1,m2) = max
{
pb(m1,m2), pb(m1, Sm1), pb(m2, Sm2),

pb(m1, Sm2) + pb(m2, Sm1)

2b

}
.
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4.4 Fixed Point Results for Multivalued αF Con-

traction Mapping in PbMS

Lemma 4.4.1. Let (M, pb) be a complete PbMS with b ≥ 1 and S :M→ K(M)

be a MVF-contraction mapping, then

lim
ξ→∞

bξvξ = 0,

where vξ = pb(mξ+1,mξ+2) and ξ = 0, 1, 2.....

Proof. We take an arbitrary m0 ∈M, as Sm being set of all images of m ∈M is

non empty for all values inM, we can choose m1 ∈ Sm0. If m1 ∈ Sm1 this means

that m1 is the fixed point of S trivially. Suppose m1 /∈ Sm1, as Sm1 is closed, so

we have pb(m1, Sm1) > 0. Also, we know that

pb(m1, Sm1) ≤ Hpb(Sm0, Sm1). (4.6)

As Sm1 is compact, so there exists m2 ∈ Sm1 such that

pb(m1,m2) = pb(m1, Sm1),

=⇒ pb(m1,m2) ≤ Hpb(Sm0, Sm1).

Similarly for m3 ∈ Sm2, we get

pb(m2,m3) ≤ Hpb(Sm1, Sm2),

which ultimately gives

pb(mξ+1,mξ+2) ≤ Hpb(Smξ, Smξ+1).

=⇒ b(pb(mξ+1,mξ+2)) ≤ b(Hpb(Smξ, Smξ+1)).

(F1) =⇒

F(b(pb(mξ+1,mξ+2))) ≤ F(b(Hpb(Smξ, Smξ+1))). (4.7)
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by (4.4),

F(b(pb(mξ+1,mξ+2))) ≤ F(M(mξ+1,mξ))− τ. (4.8)

Where

M(mξ,mξ+1) = max{pb(mξ,mξ+1), pb(mξ, Smξ), pb(mξ+1, Smξ+1),

pb(mξ, Smξ+1) + pb(mξ+1, Smξ)

2b
}

= max{pb(mξ,mξ+1), pb(mξ,mξ+1), pb(mξ+1,mξ+2),

pb(mξ,mξ+1) + pb(mξ+1,mξ+2)

2b
}

≤ max{pb(mξ,mξ+1), pb(mξ,mξ+1), pb(mξ+1,mξ+2),

b[
pb(mξ,mξ+1) + pb(mξ+1,mξ+2)

2b
]}.

= max{pb(mξ,mξ+1), pb(mξ+1,mξ+2)}.

Assume,

max{pb(mξ,mξ+1), pb(mξ+1,mξ+2)} = pb(mξ+1,mξ+2),

(4.8) =⇒

τ + F(b(pb(mξ+1,mξ+2))) ≤ F(pb(mξ+1,mξ+2)),

which is a contradiction. Therefore,

max{pb(mξ,mξ+1), pb(mξ+1,mξ+2)} = pb(mξ,mξ+1),

=⇒ F(b(pb(mξ+1,mξ+2))) ≤ F(pb(mξ,mξ+1)).

For the convenience, we are setting

vξ = pb(mξ+1,mξ+2),

where ξ = 0, 1, 2..... Clearly, vξ > 0 for all ξ ∈ N, now substituting this in above

equation we have

τ + F(b(vξ)) ≤ F(vξ−1).

Iteratively,

τ + F(bξ(vξ)) ≤ F(bξ−1(vξ−1)).
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We will get

F(bξ(vξ) ≤ F(bξ−1(vξ−1))− τ ≤ F(bξ−2(vξ−2))− 2τ ≤ .... ≤ F(v0)− ξτ (4.9)

=⇒ lim
ξ→∞
Fbξ(vξ) = −∞,

we have

lim
ξ→∞

bξvξ = 0, by F2.

Theorem 4.4.2. Let (M, pb) be a complete PbMS with b ≥ 1, such that pb

be a continuous mapping and S : M → K(M) be a multivalued αF-contraction

mapping, suppose that

(i) S is continuous;

(ii) S is an α-admissible mapping;

(iii) there exists a m0 ∈M and m1 ∈ Sm0 such that α(m0,m1) ≥ 1,

then S has a fixed point.

Proof. For m0 ∈ M by assumption, α(m0,m1) ≥ 1 for some m1 ∈ Sm0, similarly

for m2 ∈ Sm1 we have α(m1,m2) ≥ 1 and for any sequence mξ+1 ∈ Smξ, we get

α(mξ,mξ+1) ≥ 1 for all ξ ∈ N ∪ {0}. (4.10)

Now by contraction condition (4.5), we have

τ + F(α(mξ,mξ+1)b(Hpb(mξ+1,mξ+2))) ≤ F(M(mξ+1,mξ)),

(4.10) =⇒

τ + F(b(Hpb(mξ+1,mξ+2))) ≤ F(M(mξ+1,mξ)),

where b ≥ 1.

=⇒ F(b(pb(mξ+1,mξ+2))) ≤ F(M(mξ+1,mξ))− τ. (4.11)



F ixed Point Results for Multivalued αF-Contractions in PbMS 74

by lemma (4.4.1) limξ→∞ bξvξ = 0. By F3, for any γ ∈ (0, 1)

lim
ξ→∞

(bξvξ)
γFbξ(vξ) = 0 ∀ ξ ∈ N,

by (4.9)

(bξvξ)
γ(Fbξ(vξ)−F(v0)) ≤ −(bξvξ)

γξτ ≤ 0. (4.12)

Now as τ > 0, we have limξ→∞(bξvξ)
γξ = 0. So there exists a ξ1 ∈ N, such that

(bξvξ)
γξ ≤ 1 ∀ ξ ≥ ξ1.

=⇒ bξvξ ≤
1

ξ
1
γ

. (4.13)

Now we will prove that {mξ} is a Cauchy sequence in M. For this let ξ, l ∈ N

provided that ξ > l ≥ ξ1.

Consider triangular inequality of PbMS,

pb(mξ,mη) ≤ b{pb(mξ,mξ+1) + pb(mξ+1,mη)} − pb(mξ+1,mξ+1)

≤ b{pb(mξ,mξ+1) + pb(mξ+1,mη)}

≤ bpb(mξ,mξ+1) + b2{pb(mξ+1,mξ+2) + pb(mξ+2,mη)}

− pb(mξ+2,mξ+2)

≤ bpb(mξ,mξ+1) + b2{pb(mξ+1,mξ+2) + pb(mξ+2,mη)}

.

.

.

= bpb(mξ,mξ+1) + b2{pb(mξ+1,mξ+2) + .....bl−ξpb(mη−1,mη)

=

η−1∑
β=ξ

bβ−ξ+1pb(mβ,mβ+1)

≤
∞∑
β=ξ

bβpb(mβ+1,mβ+2)

=
∞∑
β=ξ

bβvβ

≤
∞∑
β=ξ

1

β
1
γ

,
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The convergence of the series
∑∞

β=1
1

β
1
γ

implies that limξ→∞ pb(mξ,mη) = 0, which

shows {mξ} is Cauchy sequence in M. Since M is complete , so there exists

m∗ ∈M such that

lim
ξ→∞

pb(mξ,m
∗) = 0.

So by definition, we must have,

lim
ξ→∞

pb(mξ,m
∗) = pb(m

∗,m∗) = 0. (4.14)

We claim that m∗ is a fixed point of S that is

pb(m
∗, Sm∗) = pb(m

∗,m∗).

Suppose pb(m
∗, Sm∗) > 0 this means there exists k0 ∈ N such that we have

pb(mξ, Sm
∗) > 0 for all ξ > k0.

pb(mξ, Sm
∗) ≤ Hpb(Smξ+1, Sm

∗).

By using our contraction condition and taking limit ξ →∞, we have,

τ + F(pb(m
∗, Sm∗)) ≤ τ + F(α(m∗,m∗)Hpb(Sm

∗, Sm∗))

≤ F(M(m∗,m∗))

≤ F(pb(m
∗, Sm∗)),

where,

M(m∗,m∗) = max{pb(m∗,m∗), pb(m∗, Sm∗), pb(m∗, Sm∗),
pb(m

∗, Sm∗) + pb(Sm
∗,m∗)

2b
}

≤ pb(m
∗, Sm∗).

=⇒ τ + F(pb(m
∗, Sm∗)) ≤ F(pb(m

∗, Sm∗)).

Since τ > 0. The above relation yields a contradiction, therefore pb(m
∗, Sm∗) = 0,

also

pb(m
∗,m∗) = 0.
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This gives m∗ ∈ S̄m∗ = Sm∗. Proving that m∗ is a fixed point of S.

Example 4.4.3. Let M = {0, 1, 2, 3....} and pb :M×M→ R+ is defined as

pb(ζ, ν) =| ζ − ν |q +[max{ζ, ν}]q for all ζ, ν ∈M,

it is easy to check that (M, pb) be a complete PbMS with b = 2q−1, where q > 1.

We also define a multivalued map S :M→ 2M, as follow

Sζ =

{0, 1}, if ζ = 0, 1

{ζ − 1, ζ} otherwise.

Consider, α :M×M→ [0,∞), working as

α(ζ, ν) =

2, if ζ, ν ∈ {0, 1}

1
2
, otherwise.

Let ζ0 = 0, ζ1 = 1, then Sζ0 = {0, 1} also ζ1 = {0, 1}, giving α(ζ0, ζ1) = α(0, 1) =

2 > 1, also for some ζ2 = 0 ∈ Sζ1, we get α(ζ1, ζ2) = α(1, 0) = 2 > 1, showing

that S is an α-admissible map.

Define F : R+ → R as F(ζ) = ln(ζ) + ζ, it can be observed easily that F is a

member of ∆f -family. Now applying F on our contraction condition,

τ + F(α(ζ, ν)Hpb(Sζ, Sν)) ≤ F(M(ζ, ν))

=⇒ τ + ln{α(ζ, ν)Hpb(Sζ, Sν)}+ α(ζ, ν)Hpb(Sζ, Sν)

≤ ln(M(ζ, ν)) + M(ζ, ν)

=⇒ τ + α(ζ, ν)Hpb(Sζ, Sν)−M(ζ, ν)

≤ ln(M(ζ, ν))− ln{α(ζ, ν)Hpb(Sζ, Sν)}

=⇒ eτ+α(ζ,ν)Hpb (Sζ,Sν)−M(ζ,ν)

≤ M(ζ, ν)

α(ζ, ν)Hpb(Sζ, Sν)

=⇒ α(ζ, ν)Hpb(Sζ, Sν)

M(ζ, ν)
eα(ζ,ν)Hpb (Sζ,Sν)−M(ζ,ν) ≤ e−τ . (4.15)
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Now

δpb(P ,P∗) = δpb(Sζ, Sν)

= max{pb(ζ, Sν), pb(ζ − 1, Sν)}

= max{inf{pb(ζ, ν), pb(ζ, ν − 1)}, inf{pb(ζ − 1, ν), pb(ζ − 1, ν − 1)}}

= max{|ζ − ν|q + ζq, |ζ − ν − 2|q + ζq}

= |ζ − ν|q + ζq.

Similarly, we can calculate

δpb(P∗,P) = |ζ − ν|q + ζq.

=⇒ Hpb(P ,P∗) = max{|ζ − ν|q + ζq, |ζ − ν|q + ζq}

= |ζ − ν|q + ζq.
(4.16)

Also,

M(ζ, ν) ≥ pb(ζ, ν) = |ζ − ν|q + ζq. (4.17)

Setting these both in contraction condition,

we get,

α(ζ, ν)Hpb(Sζ, Sν)

M(ζ, ν)
e(α(ζ,ν)Hpb (Sζ,Sν))−M(ζ,ν)

=
|ζ − ν|q + ζq

2M(ζ, ν)
e

1
2
(|ζ−ν|q+ζq)−M(ζ,ν) using (4.16)

≤ |ζ − ν|
q + ζq

2|ζ − ν|q + ζq
e

1
2
(|ζ−ν|q+ζq)−|ζ−ν|q+ζq using (4.17)

=
1

2
e

−1
2
(|ζ−ν|q+ζq)

=
1

2
e−τ

< e−τ .

This implies (4.15) is satisfied with τ = 1
2
(|ζ − ν|q + ζq), which is a positive number

for ζ 6= ν.

All conditions of (4.4.2) are true, and 0 and 1 are two fixed points of S.

Theorem 4.4.4.

Let (M, pb) be a complete PbMS with b ≥ 1, such that pb be a continuous mapping.
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Let S : M → CBpb(M) be a MVαF-contraction mapping and B ⊂ (0,∞) with

inf B > 0, suppose that

(i) S is continuous;

(ii) S is an α-admissible mapping;

(iii) there exists a m0 ∈M and m1 ∈ Sm0 such that α(m0,m1) ≥ 1;

(iv) F(inf B) = inf F(B), where F ∈ ∆f − family,

then S has a fixed point.

Proof. We take an arbitrary m0 ∈ M, as Sm being set of all images of m ∈ M

is non empty for all values in M, we can choose m1 ∈ Sm0. If m1 ∈ Sm1 this

means that m1 is the fixed point of S, So suppose m1 /∈ Sm1, as Sm1 is closed, so

we have

pb(m1, Sm1) > 0.

Also, we know that

pb(m1, Sm1) ≤ Hpb(Sm0, Sm1).

F(pb(m1, Sm1)) ≤ F(Hpb(Sm0, Sm1)), byF2. (4.18)

using (4 )

F(pb(m1, Sm1)) = inf
g∈Sm1

F(pb(m1, g)).

=⇒

inf
g∈Sm1

F(pb(m1, g)) ≤ F(Hpb(Sm0, Sm1)). (4.19)

As Sm1 is compact so we can find a m2 ∈ Sm1 such that

inf
g∈Sm1

F(pb(m1, g)) = F(pb(m1,m2)).

(4.18) gives,

F(pb(m1,m2)) ≤ F(Hpb(Sm0, Sm1)). (4.20)
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Similarly for m3 ∈ Sm2, we get

F(pb(m2,m3)) ≤ F(Hpb(Sm1, Sm2)),

which ultimately gives

F(pb(mξ+1,mξ+2)) ≤ F(Hpb(Smξ, Smξ+1)).

As b ≥ 1, so we can write

F(b(pb(mξ+1,mξ+2))) ≤ F(b(Hpb(Smξ, Smξ+1))). (4.21)

For m0 ∈ M by assumption, α(m0,m1) ≥ 1 for some m1 ∈ Sm0, similarly for

some m2 ∈ Sm1 we have α(m1,m2) ≥ 1 and for any sequence mξ+1 ∈ Smξ, we

may write we get

α(mξ,mξ+1) ≥ 1 for all ξ ∈ N ∪ {0}. (4.22)

Using (4.5),

τ + F(α(mξ,mξ+1)(Hpb(mξ+1,mξ+2))) ≤ F(M(mξ+1,mξ)),

(4.22) =⇒

τ + F(b(Hpb(mξ+1,mξ+2))) ≤ F(M(mξ+1,mξ)),

using (4.21), we have

F(b(pb(mξ+1,mξ+2))) ≤ F(M(mξ+1,mξ))− τ. (4.23)

Now using lemma (4.4.1)

lim
ξ→∞

bξvξ = 0,

Now by F3, for any γ ∈ (0, 1) and for all ξ ∈ N,

lim
ξ→∞

(bξvξ)
γFbξ(vξ) = 0,
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=⇒ (bξvξ)
γ(Fbξ(vξ)−F(v0)) ≤ −(bξvξ)

γξτ ≤ 0. (4.24)

As τ > 0, we have

(bξvξ)
γξ = 0.

So there exists a ξ1 ∈ N, such that (bξvξ)
γξ ≤ 1 for all ξ ≥ ξ1. So

bξvξ ≤
1

ξ
1
γ

. (4.25)

Next, to prove that {mξ} is a Cauchy sequence in M. For this, follow the same

steps as done in theorem (4.4.2). One can easily have

lim
ξ→∞

pb(mξ,m
∗) = pb(m

∗,m∗) = 0. (4.26)

We claim that m∗ is a fixed point of S. Suppose that pb(m
∗, Sm∗) > 0 this means

there exists k0 ∈ N such that we have pb(mξ, Sm
∗) > 0 for all ξ > k0.

pb(mξ, Sm
∗) ≤ Hpb(Smξ+1, Sm

∗).

Using (4.5) and taking limit ξ →∞, we have,

τ + F(pb(m
∗, Sm∗)) ≤ τ + F(α(m∗,m∗)Hpb(Sm

∗, Sm∗))

≤ F(M(m∗,m∗))

≤ F(pb(m
∗, Sm∗)).

Where,

M(m∗,m∗) = max{pb(m∗,m∗), pb(m∗, Sm∗), pb(m∗, Sm∗)

,
pb(m

∗, Sm∗) + pb(Sm
∗,m∗)

2b
}

≤ pb(m
∗, Sm∗).

=⇒ τ + F(pb(m
∗, Sm∗)) ≤ F(pb(m

∗, Sm∗)).

Since τ > 0. The above relation yields a contradiction.

=⇒ pb(m
∗, Sm∗) = 0.
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Also pb(m
∗,m∗) = 0. This gives m∗ ∈ S̄m∗ = Sm∗. Proving that m∗ is a fixed

point of S.

4.5 Application

Now we apply our main result to find a solution to an integral equation of Fredholm

type.

Suppose I = [0, 1], and M = C(I,R2) be the space of all continuous functions

defined from I to R2, endowed with usual sup-norm.

We define a partial b metric on M, as

pb(φ, ψ) = ‖ φ− ψ ‖∞ = sup
m∈I
{e−mp|φ(m)− ψ(m)|q} p, q > 1,

for all φ, ψ ∈M. It is easy to verify that (M, pb) is a complete PbMS.

Consider a Fredholm Integral inclusion

φ(ζ) ∈ f(ζ) +

∫ 1

0

kφ(ζ, x∗, φ(x∗))dx∗, (4.27)

such that for every Kφ : I × I ×R2 → K there exists kφ(ζ, x∗, φ∗) ∈ Kφ(ζ, x∗, φ∗).

Define a multivalued mapping S :M→ K(M), as

S(φ(ζ)) =

{
φ∗(ζ) : φ∗(ζ) ∈ ω(ζ) +

∫ 1

0

Kφ(ζ, x∗, φ(x∗))dx∗
}
. (4.28)

Theorem 4.5.1.

Suppose that the following conditions hold:

(i) Let Kφ : I × I × R2 → R2 and f : I → R2 be continuous;

(ii) there exists φ0 ∈M such that φk ∈ Sφk−1;

(iii) there exists a continuous function f : I × I → I such that

|kφ(ζ, x∗, φ(x∗))− kψ(ζ, x∗, ψ(x∗))|q ≤ sup
x∗∈I

f(φ(x∗), ψ(x∗))|φ(x∗)− ψ(x∗)|q,
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for each ζ, x∗ ∈ I and f(φ(x∗), ψ(x∗)) ≤ γ.

Then the integral inclusion (4.27) has a solution.

Proof. Let (M, pb) be a complete PbMS. We define F map as, F(ζ) = ln(ζ), for

all ζ ∈M. So after going through a natural logarithm, our condition will be,

Hpb(S(φ(ζ), Sψ(ζ))) ≤ e−τM(φ, ψ),

with α(φ, ψ) = 1.

Next to show that S satisfies this condition, Let p > 1 such that 1
p

+ 1
q

= 1, then

for φ∗ ∈ S(φ),we have

pb((φ
∗(ζ), S(ψ(ζ)))) ≤ pb(φ

∗(ζ), (ψ∗(ζ)))

= sup
ζ∈I

e−ζγ|φ∗(ζ)− ψ∗(ζ)|q

= sup
ζ∈I

e−ζγ
∣∣∣∣ ∫ 1

0

kφ(ζ, x∗, φ(x∗))− kψ(ζ, x∗, ψ(x∗))

∣∣∣∣qdx∗
≤ sup

ζ∈I
e−ζγ

[
(

∫ 1

0

|1|pdx∗)
1
p

∫ 1

0

(
|kφ(ζ, x∗, φ(x∗))− kψ(ζ, x∗, ψ(x∗))|q

) 1
q
]q
dx∗

= sup
ζ∈I

e−ζγ
∫ 1

0

|kφ(ζ, x∗, φ(x∗))− kψ(ζ, x∗, ψ(x∗))|qdx∗

= sup
ζ∈I

e−ζγ
∫ 1

0

|e−x∗γ+x∗γkφ(ζ, x∗, φ(x∗))− kψ(ζ, x∗, ψ(x∗))|qdx∗

≤ sup
ζ∈I

e−ζγ
∫ 1

0

ex
∗γf(φ(x∗), ψ(x∗))

sup
x∗∈I

e−x
∗γ
∣∣φ(x∗)− ψ(x∗)

∣∣qdx∗
= γ ‖ φ(x∗)− ψ(x∗) ‖∞ sup

ζ∈I
e−ζγ

∫ 1

0

ex
∗γdx∗

= pb(φ(x∗), ψ(x∗))(1)(eγ − 1)

≤ pb(φ(x∗), ψ(x∗))eγ

≤ eγM(φ(x∗), ψ(x∗))
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Where,

M(φ(x∗), ψ(x∗)) = max
{
pb(φ(x∗), ψ(x∗)), pb(φ(x∗), S(φ(x∗))), pb(ψ(x∗), S(ψ(x∗))),

pb(φ(x∗), S(ψ(x∗))) + pb(ψ(x∗), S(φ(x∗)))

2b

}
.

Also, as φ∗ is arbitrary, so we have

δpb(S(φ), S(ψ)) ≤ eγM(φ, ψ).

Similarly, one can calculate

δpb(S(ψ), S(φ)) ≤ eγM(ψ, φ),

=⇒ Hpb(S(φ), S(ψ)) ≤ eγM(φ, ψ),

or equally Hpb(S(φ), S(ψ)) ≤ e−τM(φ, ψ).

This shows our desired contraction condition is satisfied by choice of −τ = γ.

All conditions of the theorem (4.4.2) are satisfied, showing that integral inclusion

(4.27) has a solution.



Chapter 5

Conclusions

This research work arrives at its end in the following fashion:

• Our work started with a concise presentation of basic ideas, bringing up

the related historical results and some important work done by numerous

researchers.

• A quick history is referenced for a brief discussion on fixed point theory.

This facilitates comprehending the idea of the existence and uniqueness of

the fixed point under various conditions in a space.

• Some suitable results are presented for a better understanding of continuous,

Lipschitzian, contraction and contractive mappings, which are utilized in our

main theorems.

• A thorough examination of metric space, partial metric space, b-metric

space, and partial b metric space is presented. Primary tools for these spaces

are demonstrated with examples to differentiate their format.

• A quick review of F mappings by explaining their properties is provided.

Some important theorems and results are also linked for a finer understand-

ing of this notion.

84
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• All the properties of the Hausdorff distance are illustrated separately in the

domain of the metric space, partial metric space, and partial b metric space,

with support of examples.

• A segment dealing with alpha admissible mappings is also articulated, which

is later integrated into our main theorem.

• Getting motivation from the work of S. Kumar et al., an extension is con-

structed on the platform of partial b metric space under multivalued alpha

admissible F contraction maps. Our theorem is equipped with an example

to have a more satisfactory understanding. An application is also attached

to validate our result.

Future Work

• In the future, one can attempt to find common fixed points in partial b

metric space under multivalued alpha F contraction mapping.

• Expanding these results in the setting of “extended partial b metric space”

would be a wonderful idea.

• By introducing more properties in F mapping, one can play with the validity

of our results.
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spaces,” Central european journal of mathematics, vol. 8, no. 2, pp. 367–377,

2010.

[33] H. Qawaqneh, M. S. Md Noorani, W. Shatanawi, H. Aydi, and H. Alsamir,

“Fixed point results for multi-valued contractions in b- metric spaces and an

application,” Mathematics, vol. 7, no. 2, p. 132, 2019.

[34] M. U. Ali, H. Aydi, and M. Alansari, “New generalizations of set valued

interpolative hardy-rogers type contractions in b-metric spaces,” Journal of

Function Spaces, vol. 2021, 2021.

[35] S. Shukla, “Partial b-metric spaces and fixed point theorems,” Mediterranean

Journal of Mathematics, vol. 11, 05 2014.

[36] T. Abdeljawad, K. Abodayeh, and N. Mlaiki, “On fixed point generalizations

to partial b-metric spaces,” J. Comput. Anal. Appl, vol. 19, no. 5, pp. 883–891,

2015.

[37] E. Ameer, H. Aydi, M. Arshad, H. Alsamir, and M. S. Noorani, “Hybrid

multivalued type contraction mappings in αk-complete partial b-metric spaces

and applications,” Symmetry, vol. 11, no. 1, p. 86, 2019.

[38] A. Gupta and P. Gautam, “Quasi-partial b-metric spaces and some related

fixed point theorems,” Fixed point theory and Applications, vol. 2015, no. 1,

pp. 1–12, 2015.

[39] N. Van Dung and V. T. Le Hang, “Remarks on partial b-metric spaces and

fixed point theorems,” Matematicki Vesnik, vol. 69, no. 4, pp. 231–240, 2017.

[40] M. Gunaseelan, “Generalized fixed point theorems on complex partial b-

metric space,” International Journal of Research and Analytical Reviews,

vol. 6, no. 2, pp. 621i–625i, 2019.

[41] S. Kumar and S. Luambano, “On some fixed point theorems for multivalued

f-contractions in partial metric spaces,” Demonstratio Mathematica, vol. 54,

no. 1, pp. 151–161, 2021.



Bibliography 90

[42] B. Samet, C. Vetro, and P. Vetro, “Fixed point theorems for α–ψ-contractive

type mappings,” Nonlinear analysis: theory, methods & applications, vol. 75,

no. 4, pp. 2154–2165, 2012.

[43] H. Aydi, M. Abbas, and C. Vetro, “Partial hausdorff metric and nadler

fixed point theorem on partial metric spaces,” Topology and its Applications,

vol. 159, no. 14, pp. 3234–3242, 2012.

[44] R. P. Agarwal, M. Meehan, and D. O’regan, Fixed point theory and applica-

tions, vol. 141. Cambridge university press, 2001.

[45] M. A. Khamsi and W. A. Kirk, An introduction to metric spaces and fixed

point theory. John Wiley & Sons, 2011.

[46] J. H. Shapiro, “The schauder fixed-point theorem,” in A Fixed-Point Farrago,

pp. 75–81, Springer, 2016.

[47] E. Rakotch, “A note on contractive mappings,” Proceedings of the American

Mathematical Society, vol. 13, no. 3, pp. 459–465, 1962.

[48] T. Kamran, M. Samreen, and Q. UL Ain, “A generalization of b-metric space

and some fixed point theorems,” Mathematics, vol. 5, no. 2, p. 19, 2017.

[49] I. Altun and H. Simsek, “Some fixed point theorems on dualistic partial metric

spaces,” Journal of Advanced Mathematical Studies, vol. 1, no. 1-2, pp. 1–9,

2008.

[50] F. Aryani, H. Mahmud, C. C. Marzuki, M. Soleh, R. Yendra, and A. Fudholi,

“Continuity function on partial metric space,” Journal of Mathematics and

Statistics, vol. 12, no. 4, pp. 271–276, 2016.

[51] D. Wardowski, “Fixed points of a new type of contractive mappings in com-

plete metric spaces,” Fixed point theory and applications, vol. 2012, no. 1,

pp. 1–6, 2012.

[52] I. Altun, G. Minak, and H. Dag, “Multivalued f-contractions on complete

metric spaces,” 2015.



Bibliography 91

[53] A. Felhi, “Some fixed point results for multi-valued contractive mappings in

partial b-metric spaces,” J. Adv. Math. Stud, vol. 9, no. 2, pp. 208–225, 2016.

[54] S. Anwar, M. Nazam, H. H. Al Sulami, A. Hussain, K. Javed, and M. Arshad,

“Existence fixed-point theorems in the partial b-metric spaces and an appli-

cation to the boundary value problem,” AIMS Mathematics, vol. 7, no. 5,

pp. 8188–8205, 2022.


	Author's Declaration
	Plagiarism Undertaking
	Acknowledgements
	Abstract
	List of Figures
	Abbreviations
	Symbols
	1 Introduction
	1.1 Historical Background
	1.2 Thesis Contribution

	2 Preliminaries
	2.1 Metric space
	2.2 Some Useful Mappings in Metric Space
	2.3 Fixed Points of a Mapping 
	2.4 Some Extensions in Metric spaces
	2.4.1 b-Metric Spaces
	2.4.2 Partial Metric Space


	3  Some Fixed Point Results under MVF-Contractions in PMS.
	3.1 Some Tools from Partial Metric Spaces.
	3.2 Hausdorff Distance in Partial Metric Space.
	3.3 Multivalued F-contraction Mapping.
	3.4 Fixed Point Theorems with F-contraction mapping in PMS.
	3.5 Application

	4 Fixed Point Results for Multivalued F-Contraction in PbMS
	4.1 Partial b-metric space
	4.2 Hausdorff metric in PbMS.
	4.3 Some Necessary Ingredients.
	4.4 Fixed Point Results for Multivalued F Contraction Mapping in PbMS
	4.5 Application

	5 Conclusions
	Bibliography



